Permutation groups of prime degree, a quick proof of Burnside's theorem

被引:12
作者
Müller, P [1 ]
机构
[1] Univ Wurzburg, Math Inst, D-79074 Wurzburg, Germany
关键词
Primary 20B20; Secondary 20B05;
D O I
10.1007/s00013-005-1421-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A transitive permutation group of prime degree is doubly transitive or solvable. We give a direct proof of this theorem by Burnside which uses neither S-ring type arguments nor representation theory.
引用
收藏
页码:15 / 17
页数:3
相关论文
共 7 条
[1]  
[Anonymous], JB DTSCH MATH VEREIN
[2]  
Burnside W., 1911, Theory of groups of finite order
[3]  
Dixon JD., 1996, PERMUTATION GROUPS
[4]  
Dress A.W.M., 1992, BAYREUTH MATH SCHR, V40, P7
[5]  
Huppert B., 1982, Finite Groups III
[6]  
Lidl R., 1993, Pitman Monographs and Surveys in Pure and Applied Mathematics, V65
[7]  
WIELANDT H., 1994, MATH WERKE, V1