Machine learning for design principles for single atom catalysts towards electrochemical reactions

被引:66
作者
Tamtaji, Mohsen [1 ,2 ]
Gao, Hanyu [1 ,2 ]
Hossain, Delowar [1 ,2 ]
Galligan, Patrick Ryan [1 ,2 ]
Wong, Hoilun [1 ,2 ]
Liu, Zhenjing [1 ,2 ]
Liu, Hongwei [1 ,2 ]
Cai, Yuting [1 ,2 ]
Goddard, William A., III [3 ]
Luo, Zhengtang [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Guangdong Hong Kong Macao Joint Lab Intelligent M, William Mang Inst Nano Sci & Technol,Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong Branch, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[3] CALTECH, Mat & Proc Simulat Ctr MSC, MC 139-74, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
HYDROGEN EVOLUTION REACTION; ARTIFICIAL NEURAL-NETWORK; DENSITY-FUNCTIONAL THEORY; OXYGEN REDUCTION; CO2; REDUCTION; QUANTUM-MECHANICS; ACCELERATED DISCOVERY; BIMETALLIC CATALYSTS; REACTION PATHWAYS; HIGH-PERFORMANCE;
D O I
10.1039/d2ta02039d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) integrated density functional theory (DFT) calculations have recently been used to accelerate the design and discovery of heterogeneous catalysts such as single atom catalysts (SACs) through the establishment of deep structure-activity relationships. This review provides recent progress in the ML-aided rational design of heterogeneous catalysts with the focus on SACs in terms of structure-activity relationships, feature importance analysis, high-throughput screening, stability, and metal-support interactions for electrochemistry. Support vector machine (SVM), random forest regression (RFR), and deep neural networks (DNN) along with atomic properties are mainly used for the design of SACs. The ML results have shown that the number of electrons in the d orbital, oxide formation enthalpy, ionization energy, Bader charge, d-band center, and enthalpy of vaporization are mainly the most important parameters for the defining of the structure-activity relationships for electrochemistry. However, the black-box nature of ML techniques occasionally makes a physical interpretation of descriptors, such as the Bader charge, d-band center, and enthalpy of vaporization, non-trivial. At the current stage, ML application is limited by the lack of a large and high-quality database. Future prospects for the development of a large database and a generalized ML algorithm for SAC design are discussed to give insights for further studies in this field.
引用
收藏
页码:15309 / 15331
页数:23
相关论文
共 251 条
[1]   Dimensional Stacking for Machine Learning in ToF-SIMS Analysis of Heterostructures [J].
Abbasi, Kevin ;
Smith, Hugh ;
Hoffman, Matthew ;
Farghadany, Elahe ;
Bruckman, Laura S. ;
Sehirlioglu, Alp .
ADVANCED MATERIALS INTERFACES, 2021, 8 (03)
[2]   Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning [J].
Artrith, Nongnuch ;
Lin, Zhexi ;
Chen, Jingguang G. .
ACS CATALYSIS, 2020, 10 (16) :9438-9444
[3]   Toward a mechanistic understanding of electrocatalytic nanocarbon [J].
Askins, Erik J. ;
Zoric, Marija R. ;
Li, Matthew ;
Luo, Zhengtang ;
Amine, Khalil ;
Glusac, Ksenija D. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[5]   Artificial Intelligence in Chemistry: Current Trends and Future Directions [J].
Baum, Zachary J. ;
Yu, Xiang ;
Ayala, Philippe Y. ;
Zhao, Yanan ;
Watkins, Steven P. ;
Zhou, Qiongqiong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) :3197-3212
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Machine Learning in Nanoscience: Big Data at Small Scales [J].
Brown, Keith A. ;
Brittman, Sarah ;
Maccaferri, Nicolo ;
Jariwala, Deep ;
Ceano, Umberto .
NANO LETTERS, 2020, 20 (01) :2-10
[8]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[9]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[10]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072