How complex a dynamical network can be?

被引:7
作者
Baptista, M. S. [1 ,5 ,6 ]
Kakmeni, F. Moukam [2 ,5 ]
Del Magno, Gianluigi [3 ,5 ]
Hussein, M. S. [4 ]
机构
[1] Univ Aberdeen, Inst Complex Syst & Math Biol, SUPA, Kings Coll, Aberdeen AB24 3UE, Scotland
[2] Univ Buea, Dept Phys, Fac Sci, Buea, Cameroon
[3] Ctr Matemat Aplicada Previsdo & Decisdao Econ, P-1200781 Lisbon, Portugal
[4] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil
[5] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[6] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
基金
巴西圣保罗研究基金会;
关键词
METRIC INVARIANT;
D O I
10.1016/j.physleta.2011.01.054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen: (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1978, Bull. Soc. Braz. Math., DOI DOI 10.1007/BF02584795
[2]   Transmission of information in active networks [J].
Baptista, M. S. ;
Kurths, J. .
PHYSICAL REVIEW E, 2008, 77 (02)
[3]   Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information [J].
Baptista, M. S. ;
Kakmeni, F. M. Moukam ;
Grebogi, C. .
PHYSICAL REVIEW E, 2010, 82 (03)
[4]   Lyapunov exponents of a lattice of chaotic maps with a power-law coupling [J].
Batista, AM ;
Viana, RL .
PHYSICS LETTERS A, 2001, 286 (2-3) :134-140
[5]   Synchronization of bursting neurons: What matters in the network topology [J].
Belykh, I ;
de Lange, E ;
Hasler, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[6]   Dynamics of light propagation in spatiotemporal dielectric structures [J].
Biancalana, Fabio ;
Amann, Andreas ;
Uskov, Alexander V. ;
O'Reilly, Eoin P. .
PHYSICAL REVIEW E, 2007, 75 (04)
[7]   Degree mixing and the enhancement of synchronization in complex weighted networks [J].
Chavez, M. ;
Hwang, D. -U. ;
Martinerie, J. ;
Boccaletti, S. .
PHYSICAL REVIEW E, 2006, 74 (06)
[8]   Coemergence of regularity and complexity during neural network development [J].
Fuchs, E. ;
Ayali, A. ;
Robinson, A. ;
Hulata, E. ;
Ben-Jacob, E. .
DEVELOPMENTAL NEUROBIOLOGY, 2007, 67 (13) :1802-1814
[9]   SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4185-4188
[10]   A MODEL OF NEURONAL BURSTING USING 3 COUPLED 1ST ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1984, 221 (1222) :87-102