The GEOFLOW-experiment on ISS (part III): Bifurcation analysis

被引:9
作者
Beltrame, P [1 ]
Egbers, C
Hollerbach, R
机构
[1] BTU, Dept Aerodynam & Fluidmech, Cottbus, Germany
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
来源
GRAVITATIONAL EFFECTS IN PHYSICO-CHEMICAL PROCESSES | 2003年 / 32卷 / 02期
关键词
D O I
10.1016/S0273-1177(03)90250-X
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Codimension 2 bifurcation of convective patterns in the nonrotating spherical Benard Problem of Boussinesq fluid is studied using center manifold reduction. The aim is to determine, in the GEOFLOW-experiment framework, the physical parameters in order to obtain intermittent-like behaviour dynamics. We compute the critical aspect ratio and Rayleigh number corresponding to the (l, l + 1) mode interaction. In the case of the (2,3) interaction, the existence of heteroclinic cycles are examined versus the Prandtl number. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 13 条
[1]   HETEROCLINIC ORBITS IN A SPHERICALLY INVARIANT SYSTEM [J].
ARMBRUSTER, D ;
CHOSSAT, P .
PHYSICA D, 1991, 50 (02) :155-176
[2]  
CHOSSAT P, 1983, J MEC THEOR APPL, V2, P799
[3]   Heteroclinic cycles in bifurcation problems with O(3) symmetry and the spherical Benard problem [J].
Chossat, P ;
Guyard, F .
JOURNAL OF NONLINEAR SCIENCE, 1996, 6 (03) :201-238
[5]  
CHOSSAT P, 1999, COMMUNICATION
[6]  
Chossat P., 1994, Applied Mathematical Sciences, V102
[7]  
Chossat P., 2000, ADV SERIES NONLINEAR, V15
[8]   STATIC, WAVE-LIKE, AND CHAOTIC THERMAL-CONVECTION IN SPHERICAL GEOMETRIES [J].
FRIEDRICH, R ;
HAKEN, H .
PHYSICAL REVIEW A, 1986, 34 (03) :2100-2120
[9]  
FUNARO D, 1992, POLYM APPROXIMATION
[10]   GRADIENT PROPERTY OF BIFURCATION EQUATION FOR SYSTEMS WITH ROTATIONAL SYMMETRY [J].
GAETA, G ;
ROSSI, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1671-1673