Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating

被引:37
作者
Wang, Yanqing [1 ]
Liu, Zengguang [1 ]
Gu, Huwei [1 ]
Cui, Chunzhi [2 ]
Hao, Jingbin [3 ]
机构
[1] China Univ Min & Technol, Sch Mat Sci & Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Engineer Command Coll, Dept Training, Xuzhou 221004, Jiangsu, Peoples R China
[3] China Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Jiangsu, Peoples R China
关键词
FDM; numerical calculation; SiC; PLA composite filaments; microwave; interface bonding; 3D; STRENGTH;
D O I
10.1557/jmr.2019.296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polylactic acid (PLA) filament 3D parts printed by fused deposition modeling (FDM) have poor mechanical properties because of weak fusion interfaces. This article shows that SiC-coated PLA filaments are effective means to increase mechanical performance of PLA composites that are microwave heated. Numerical calculations on temperature-rising characteristics and temperature distribution of the interface in the microwave field are shown. 3D-printed specimens of PLA/SiC composites were printed by FDM and heated in a microwave. The experiments show the SiC/PLA composite filaments have better temperature-rising characteristics and temperature distribution at 185 degrees C for 60 s in the microwave field, and this enabled the 3Dprinted specimens to achieve in situ remelting on the interface and increased interface bonding between PLA filaments. The SiC/PLA composite specimens heated using microwave increased by 51% in tensile strength, 42% in tensile modulus, and 18.7% in interlayer breaking stress relative to PLA. These results provided a new approach for the improvement of FDM workpiece strength.
引用
收藏
页码:3412 / 3419
页数:8
相关论文
共 26 条
[1]   Electromagnetic energy absorption potential and microwave heating capacity of SiC thin films in the 1-16 GHz frequency range [J].
Aissa, B. ;
Tabet, N. ;
Nedil, M. ;
Therriault, D. ;
Rosei, F. ;
Nechache, R. .
APPLIED SURFACE SCIENCE, 2012, 258 (14) :5482-5485
[2]  
Anderson J., 2017, FULL CIRCLE NASA DEM
[3]  
[Anonymous], 2018, Microbiome, V6, P1
[4]   3D printing of bone substitute implants using calcium phosphate and bioactive glasses [J].
Bergmann, Christian ;
Lindner, Markus ;
Zhang, Wen ;
Koczur, Karolina ;
Kirsten, Armin ;
Telle, Rainer ;
Fischer, Horst .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (12) :2563-2567
[5]   3D printing of multifunctional nanocomposites [J].
Campbell, Thomas A. ;
Ivanova, Olga S. .
NANO TODAY, 2013, 8 (02) :119-120
[6]   3D-printed extrusion dies: a versatile approach to optical material processing [J].
Ebendorff-Heidepriem, Heike ;
Schuppich, Juliane ;
Dowler, Alastair ;
Lima-Marques, Luis ;
Monro, Tanya M. .
OPTICAL MATERIALS EXPRESS, 2014, 4 (08) :1494-1504
[7]   Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation [J].
Eisenmenger, Laura B. ;
Wiggins, Richard H., III ;
Fults, Daniel W., III ;
Huo, Eugene J. .
WORLD NEUROSURGERY, 2017, 107 :1049.e1-1049.e7
[8]  
Jayanth N., 2018, COMPOSITES B, V159, P224
[9]   3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform [J].
Kennedy, Z. C. ;
Christ, J. F. ;
Evans, K. A. ;
Arey, B. W. ;
Sweet, L. E. ;
Warner, M. G. ;
Erikson, R. L. ;
Barrett, C. A. .
NANOSCALE, 2017, 9 (17) :5458-5466
[10]   Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples [J].
Levenhagen, Neiko P. ;
Dadmun, Mark D. .
POLYMER, 2017, 122 :232-241