Positive Solutions for a Three-Point Boundary Value Problem of Fractional Q-Difference Equations

被引:14
作者
Yang, Chen [1 ]
机构
[1] Shanxi Univ, Basic Course Dept, Business Coll, Taiyuan 030031, Shanxi, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 09期
关键词
fractional q-difference equation; existence and uniqueness; positive solutions; fixed point theorem on mixed monotone operators; Q-INTEGRALS; EXISTENCE;
D O I
10.3390/sym10090358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, a three-point boundary value problem of fractional q-difference equations is discussed. By using fixed point theorems on mixed monotone operators, some sufficient conditions that guarantee the existence and uniqueness of positive solutions are given. In addition, an iterative scheme can be made to approximate the unique solution. Finally, some interesting examples are provided to illustrate the main results.
引用
收藏
页数:15
相关论文
共 31 条
[1]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[2]  
Ahmad B, 2016, B MATH SOC SCI MATH, V59, P119
[3]   Impulsive fractional q-integro-difference equations with separated boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada ;
Alsaedi, Ahmed ;
Alsulami, Hamed H. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 :199-213
[4]   Existence of Solutions for Nonlinear Fractional q-Difference Inclusions with Nonlocal Robin (Separated) Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (03) :1333-1351
[5]   Existence results for fractional q-difference equations of order α ∈]2, 3[ with three-point boundary conditions [J].
Almeida, Ricardo ;
Martins, Natalia .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) :1675-1685
[6]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[7]   q-Fractional Calculus and Equations Preface [J].
Ismail, Mourad .
Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 :IX-+
[8]  
[Anonymous], 1910, Q. J. Pure Appl. Math., DOI DOI 10.1017/S0080456800002751
[9]  
[Anonymous], 2012, FRACT DIFFER CALC, DOI DOI 10.7153/FDC-02-10
[10]  
Ferreira RAC, 2010, ELECTRON J QUAL THEO, P1