PHASE CALCULATION FOR IMAGE ROTATION IN A NONPLANAR POLARIZATION NULLING INTERFEROMETER

被引:1
作者
Tavrov, A. V. [1 ]
Orlov, D. A. [2 ]
Vinogradov, I. I. [1 ]
机构
[1] Russian Acad Sci IKI RAN, Space Res Inst, Moscow, Russia
[2] Tech Univ, Moscow Power Engn Inst, Moscow, Russia
关键词
interferometer; polarization; geometric phase;
D O I
10.1007/s11018-010-9612-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new matrix method for calculating geometric image rotation, taking into account the effects of the geometric and dynamic phases in a nonplanar optical layout. In order to describe the propagation of light in this system, the algebra of two-dimensional Jones polarization vectors and matrices in two-dimensional space is extended to three-dimensional space. We give practical examples of nonplanar layouts of polarization nulling interferometers for application in astronomy and precision wavefront analysis.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 20 条
  • [1] Azzam R., 1981, Ellipsometry and polarized light
  • [2] THE INTERFERENCE OF LIGHT AND THE BELL THEOREM
    BELINSKII, AV
    KLYSHKO, DN
    [J]. USPEKHI FIZICHESKIKH NAUK, 1993, 163 (08): : 1 - 45
  • [3] Achromatic polarization-preserving beam displacer
    Galvez, EJ
    [J]. OPTICS LETTERS, 2001, 26 (13) : 971 - 973
  • [4] The geometric phase
    Hariharan, P.
    [J]. PROGRESS IN OPTICS, VOL 48, 2005, 48 : 149 - 201
  • [5] HARIHARAN P, 2003, OPTICAL INTERFEROMET, P236
  • [6] Ishchenko E. V., 2005, POLARIZATION OPTICS
  • [7] 2 TOPOLOGICAL PHASES IN OPTICS BY MEANS OF A NONPLANAR MACH-ZEHNDER INTERFEROMETER
    JIAO, H
    WILKINSON, SR
    CHIAO, RY
    [J]. PHYSICAL REVIEW A, 1989, 39 (07): : 3475 - 3486
  • [8] Karasik A.Ya., 1995, Laser interferometry principles
  • [9] Kolomiitsev Yu. V., 1976, INTERFEROMETERS
  • [10] Korn G. A., 1974, Mathematical Handbook for Scientists and Engineers