Risk prediction of major complications in individuals with diabetes: the Atherosclerosis Risk in Communities Study

被引:11
作者
Parrinello, C. M. [1 ,2 ,7 ]
Matsushita, K. [1 ,2 ]
Woodward, M. [1 ,2 ,3 ,4 ]
Wagenknecht, L. E. [5 ]
Coresh, J. [1 ,2 ,6 ]
Selvin, E. [1 ,2 ,6 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Welch Ctr Prevent Epidemiol & Clin Res, Baltimore, MD USA
[3] Univ Oxford, George Inst Global Hlth, Nuffield Dept Populat Hlth, Oxford, England
[4] Univ Sydney, George Inst Global Hlth, Sydney, NSW, Australia
[5] Wake Forest Sch Med, Div Publ Hlth Sci, Winston Salem, NC USA
[6] Johns Hopkins Univ, Dept Med, Div Gen Internal Med, Baltimore, MD USA
[7] Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, 1300 Morris Pk Ave,Belfer 1308A, Bronx, NY 10461 USA
关键词
cardiovascular disease; diabetes complications; population study; type; 2; diabetes; GLOMERULAR-FILTRATION-RATE; CORONARY-HEART-DISEASE; CARDIOVASCULAR-DISEASE; NATRIURETIC PEPTIDE; KIDNEY-DISEASE; ROC CURVE; SURVIVAL; MODEL; ASSOCIATION; VALIDATION;
D O I
10.1111/dom.12686
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: To develop a prediction equation for 10-year risk of a combined endpoint (incident coronary heart disease, stroke, heart failure, chronic kidney disease, lower extremity hospitalizations) in people with diabetes, using demographic and clinical information, and a panel of traditional and non-traditional biomarkers. Methods: We included in the study 654 participants in the Atherosclerosis Risk in Communities (ARIC) study, a prospective cohort study, with diagnosed diabetes (visit 2; 1990-1992). Models included self-reported variables (Model 1), clinical measurements (Model 2), and glycated haemoglobin (Model 3). Model 4 tested the addition of 12 blood-based biomarkers. We compared models using prediction and discrimination statistics. Results: Successive stages of model development improved risk prediction. The C-statistics (95% confidence intervals) of models 1, 2, and 3 were 0.667 (0.64, 0.70), 0.683 (0.65, 0.71), and 0.694 (0.66, 0.72), respectively (p < 0.05 for differences). The addition of three traditional and non-traditional biomarkers [beta-2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR] to Model 3 significantly improved discrimination (C-statistic = 0.716; p = 0.003) and accuracy of 10-year risk prediction for major complications in people with diabetes (midpoint percentiles of lowest and highest deciles of predicted risk changed from 18-68% to 12-87%). Conclusions: These biomarkers, particularly those of kidney filtration, may help distinguish between people at low versus high risk of long-term major complications.
引用
收藏
页码:899 / 906
页数:8
相关论文
共 55 条
  • [1] One Risk Assessment Tool for Cardiovascular Disease, Type 2 Diabetes, and Chronic Kidney Disease
    Alssema, Marjan
    Newson, Rachel S.
    Bakker, Stephan J. L.
    Stehouwer, Coen D. A.
    Heymans, Martijn W.
    Nijpels, Giel
    Hillege, Hans L.
    Hofman, Albert
    Witteman, Jacqueline C. M.
    Gansevoort, Ron T.
    Dekker, Jacqueline M.
    [J]. DIABETES CARE, 2012, 35 (04) : 741 - 748
  • [2] 8. Cardiovascular Disease and Risk Management
    不详
    [J]. DIABETES CARE, 2016, 39 : S60 - S71
  • [3] BAECKE JAH, 1982, AM J CLIN NUTR, V36, P936
  • [4] External Validation of the UKPDS Risk Engine in Incident Type 2 Diabetes: A Need for New Type 2 Diabetes-Specific Risk Equations
    Bannister, Christian A.
    Poole, Chris D.
    Jenkins-Jones, Sara
    Morgan, Christopher Ll
    Elwyn, Glyn
    Spasic, Irena
    Currie, Craig J.
    [J]. DIABETES CARE, 2014, 37 (02) : 537 - 545
  • [5] Cardiovascular risk assessment scores for people with diabetes: a systematic review
    Chamnan, P.
    Simmons, R. K.
    Sharp, S. J.
    Griffin, S. J.
    Wareham, N. J.
    [J]. DIABETOLOGIA, 2009, 52 (10) : 2001 - 2014
  • [6] Association Between Cardiac Biomarkers and the Development of ESRD in Patients With Type 2 Diabetes Mellitus, Anemia, and CKD
    Desai, Akshay S.
    Toto, Robert
    Jarolim, Petr
    Uno, Hajime
    Eckardt, Kai-Uwe
    Kewalramani, Reshma
    Levey, Andrew S.
    Lewis, Eldrin F.
    McMurray, John J. V.
    Parving, Hans-Henrik
    Solomon, Scott D.
    Pfeffer, Marc A.
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2011, 58 (05) : 717 - 728
  • [7] How diabetes risk assessment tools are implemented in practice: A systematic review
    Dhippayom, Teerapon
    Chaiyakunapruk, Nathorn
    Krass, Ines
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2014, 104 (03) : 329 - 342
  • [8] Association of Cardiometabolic Multimorbidity With Mortality The Emerging Risk Factors Collaboration
    Di Angelantonio, Emanuele
    Kaptoge, Stephen
    Wormser, David
    Willeit, Peter
    Butterworth, Adam S.
    Bansal, Narinder
    O'Keeffe, Linda M.
    Gao, Pei
    Wood, Angela M.
    Burgess, Stephen
    Freitag, Daniel F.
    Pennells, Lisa
    Peters, Sanne A.
    Hart, Carole L.
    Haheim, Lise Lund
    Gillum, Richard F.
    Nordestgaard, Borge G.
    Psaty, Bruce M.
    Yeap, Bu B.
    Knuiman, Matthew W.
    Nietert, Paul J.
    Kauhanen, Jussi
    Salonen, Jukka T.
    Kuller, Lewis H.
    Simons, Leon A.
    van der Schouw, Yvonne T.
    Barrett-Connor, Elizabeth
    Selmer, Randi
    Crespo, Carlos J.
    Rodriguez, Beatriz
    Verschuren, W. M. Monique
    Salomaa, Veikko
    Svardsudd, Kurt
    van der Harst, Pim
    Bjorkelund, Cecilia
    Wilhelmsen, Lars
    Wallace, Robert B.
    Brenner, Hermann
    Amouyel, Philippe
    Barr, Elizabeth L. M.
    Iso, Hiroyasu
    Onat, Altan
    Trevisan, Maurizio
    D'Agostino, Ralph B., Sr.
    Cooper, Cyrus
    Kavousi, Maryam
    Welin, Lennart
    Roussel, Ronan
    Hu, Frank B.
    Sato, Shinichi
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (01): : 52 - 60
  • [9] Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease
    Di Angelantonio, Emanuele
    Gao, Pei
    Khan, Hassan
    Butterworth, Adam S.
    Wormser, David
    Kaptoge, Stephen
    Seshasai, Sreenivasa Rao Kondapally
    Thompson, Alex
    Sarwar, Nadeem
    Willeit, Peter
    Ridker, Paul M.
    Barr, Elizabeth L. M.
    Khaw, Kay-Tee
    Psaty, Bruce M.
    Brenner, Hermann
    Balkau, Beverley
    Dekker, Jacqueline M.
    Lawlor, Debbie A.
    Daimon, Makoto
    Willeit, Johann
    Njolstad, Inger
    Nissinen, Aulikki
    Brunner, Eric J.
    Kuller, Lewis H.
    Price, Jackie F.
    Sundstrom, Johan
    Knuiman, Matthew W.
    Feskens, Edith J. M.
    Verschuren, W. M. M.
    Wald, Nicholas
    Bakker, Stephan J. L.
    Whincup, Peter H.
    Ford, Ian
    Goldbourt, Uri
    Gomez-de-la-Camara, Agustin
    Gallacher, John
    Simons, Leon A.
    Rosengren, Annika
    Sutherland, Susan E.
    Bjorkelund, Cecilia
    Blazer, Dan G.
    Wassertheil-Smoller, Sylvia
    Onat, Altan
    Ibanez, Alejandro Marin
    Casiglia, Edoardo
    Jukema, J. Wouter
    Simpson, Lara M.
    Giampaoli, Simona
    Nordestgaard, Borge G.
    Selmer, Randi
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (12): : 1225 - 1233
  • [10] Echouffo-Tcheugui J-B, 2013, Diabetes Metab, V39, P389, DOI 10.1016/j.diabet.2013.07.002