Fast Visual Tracking With Siamese Oriented Region Proposal Network

被引:78
作者
Zhu, Hong [1 ,2 ]
Xue, Mogen [1 ,2 ]
Wang, Yong [1 ,2 ]
Yuan, Guanglin [1 ]
Li, Xin [3 ,4 ]
机构
[1] Army Artillery & Air Def Acad PLA, Hefei 230031, Peoples R China
[2] Key Lab Polarizat Imaging Detect Technol, Hefei 230031, Peoples R China
[3] Natl Univ Def Technol, Hefei 230031, Peoples R China
[4] State Key Lab Pulsed Power Laser Technol, Hefei 230031, Peoples R China
关键词
Proposals; Feature extraction; Visualization; Convolution; Correlation; Target tracking; Deconvolution; Oriented visual tracking; Siamese network; oriented RPN; feature fusion;
D O I
10.1109/LSP.2022.3178656
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current oriented visual tracking depends on segmentation-driven framework brings about expensive computation cost, which becomes the bottleneck in the practical application. This paper proposes a simple and effective Siamese oriented Region Proposal Network (Siamese-ORPN) for visual tracking. Specifically, we propose to use oriented RPN on the similarity feature maps to directly generate high-quality oriented proposals in a nearly cost-free manner. Moreover, a top-down feature fusion network is proposed as the backbone for feature extraction and feature fusion, which can achieve substantial gains from the diversity of visual-semantic hierarchies. The Siamese-ORPN runs at 85 fps while achieving leading performance on the benchmark datasets including VOT2018 (44.6% EAO) and VOT2019 (39.6% EAO).
引用
收藏
页码:1437 / 1441
页数:5
相关论文
共 24 条
[1]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[2]  
Bertinetto Luca, 2016, ARXIV160605233
[3]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[4]  
Chen BaoXin., 2019, Fast visual object tracking with rotated bounding boxes
[5]   Siamese Box Adaptive Network for Visual Tracking [J].
Chen, Zedu ;
Zhong, Bineng ;
Li, Guorong ;
Zhang, Shengping ;
Ji, Rongrong .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6667-6676
[6]  
Cheng S., P IEEECVF C COMPUTER, V2021, P4421
[7]   Visual Tracking via Adaptive Spatially-Regularized Correlation Filters [J].
Dai, Kenan ;
Wang, Dong ;
Lu, Huchuan ;
Sun, Chong ;
Li, Jianhua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4665-4674
[8]   ATOM: Accurate Tracking by Overlap Maximization [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4655-4664
[9]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[10]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853