Forecasting conditional climate-change using a hybrid approach

被引:7
作者
Esfahani, Akbar Akbari [1 ,2 ]
Friedel, Michael J. [1 ,2 ]
机构
[1] Univ Colorado, Ctr Computat & Math Biol, Denver, CO 80217 USA
[2] Denver Fed Ctr, United States Geol Survey, Crustal Geophys & Geochem Sci Ctr, Lakewood, CO 80225 USA
关键词
Climate-change; Drought; Forecast; Fractal modeling; Palmer Drought Severity Index; PDSI; Precipitation; Temperature; Southwestern United States; SELF-ORGANIZING MAP; LONG; TEMPERATURE; IMPUTATION; MODELS; ENSO;
D O I
10.1016/j.envsoft.2013.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009-2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists. Published by Elsevier Ltd.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 61 条
[1]  
[Anonymous], SOM TOOLB
[2]  
[Anonymous], 2011, J. Inform. Data Manag., V2, P51, DOI [DOI 10.5753/JIDM.2011.1385, 10.5753/jidm.2011.1385]
[3]  
[Anonymous], 1997, FRACTALS CHAOS GEOLO, DOI DOI 10.1017/CBO9781139174695
[4]  
[Anonymous], 2002, The Elements of Statistical Learning: Data Mining, Inference and Prediction
[5]  
[Anonymous], 2010, GEN TECHNICAL REPORT, DOI DOI 10.1017/CBO9781107415324.004
[6]  
Ascacibar F.J. Martinez de Pison., 2008, Functions for calculating fractal dimension-Package 'fdim
[7]  
Barbara D., 1999, Chaotic mining: Knowledge discovery using the fractal dimension
[8]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[9]  
Beran J., 1994, Statistics for Long-Memory Processes
[10]   The Late Fall Extratropical Response to ENSO: Sensitivity to Coupling and Convection in the Tropical West Pacific [J].
Blade, Ileana ;
Newman, Matthew ;
Alexander, Michael A. ;
Scott, James D. .
JOURNAL OF CLIMATE, 2008, 21 (23) :6101-6118