Sc-47 production from titanium targets using electron linacs

被引:52
作者
Mamtimin, Mayir [1 ]
Harmon, Frank [1 ]
Starovoitova, Valeriia N. [1 ,2 ]
机构
[1] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83201 USA
[2] Niowave Inc, Lansing, MI 48906 USA
关键词
Radioisotope Production; Photonuclear; Specific activity; MCNPX;
D O I
10.1016/j.apradiso.2015.04.012
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this work we have studied the feasibility of photonuclear production of Sc-47 from Ti-48 via Ti-48(gamma,p)Sc-47 reaction. Photon flux distribution for electron beams of different energies incident on tungsten converter was calculated using MCNPX radiation transport code. Sc-47 production rate dependence on electron beam energy was found and Sc-47 yields were estimated. It was shown that irradiating a natural Ti target results in numerous scandium isotopes which can reduce the specific activity of Sc-47. Irradiating enriched Ti-48 targets with a 22 MeV 1 mA beam will result in hundreds of MBq/g activity of Sc-47 and no other isotopes of scandium. Decreasing the size of the target will result in much higher average photon flux through the target and tens of GBq/g levels of specific activity of Sc-47. Increasing the beam energy will also result in higher yields, but as soon as the electron energy exceeds the Ti-48(gamma,np)Sc-46 reaction threshold, Sc-46 starts being produced and its fraction in total scandium atoms grows as beam energy increases. The results of the simulations were benchmarked by irradiating natural titanium foil with 22 MeV electron beam incident on the tungsten converter. Measured Sc-47 activities were found to be in very good agreement with the predictions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 12 条
[1]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[2]  
DeLorme K, 2014, J NUCL MED, V55
[3]   Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy [J].
Kolsky, KL ;
Joshi, V ;
Mausner, LF ;
Srivastava, SC .
APPLIED RADIATION AND ISOTOPES, 1998, 49 (12) :1541-1549
[4]   Preparation of 225Ac by 226Ra(γ,n) photonuclear reaction on an electron accelerator, MT-25 microtron [J].
Maslov O.D. ;
Sabel'nikov A.V. ;
Dmitriev S.N. .
Radiochemistry, 2006, 48 (2) :195-197
[5]  
Mausner L. F., 1993, Journal of Labelled Compounds and Radiopharmaceuticals, V32, P388
[6]   Radionuclide development at BNL for nuclear medicine therapy [J].
Mausner, LF ;
Kolsky, KL ;
Joshi, V ;
Srivastava, SC .
APPLIED RADIATION AND ISOTOPES, 1998, 49 (04) :285-294
[7]  
Pelowitz D. B., 2008, LACP071473 LANL
[8]   Recent advances in radionuclide therapy [J].
Srivastava, S ;
Dadachova, E .
SEMINARS IN NUCLEAR MEDICINE, 2001, 31 (04) :330-341
[9]  
Srivastava S.C., 2013, J. Postgrad. Med. Edu Res, V47, P31, DOI [DOI 10.5005/JP-JOURNALS-10028-1054, 10.5005/jp-journals-10028-1054]
[10]   Production of medical radioisotopes with linear accelerators [J].
Starovoitova, Valeriia N. ;
Tchelidze, Lali ;
Wells, Douglas P. .
APPLIED RADIATION AND ISOTOPES, 2014, 85 :39-44