High proton conductivity membrane with coconut shell activated carbon

被引:6
作者
Kammoun, Mejdi [1 ]
Lundquist, Lauren [1 ,2 ]
Ardebili, Haleh [1 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
Proton conductivity; Composite electrolytes; Nafion; Coconut shell; Activated carbon; NAFION MEMBRANES; COMPOSITE MEMBRANES; EXCHANGE MEMBRANES; ELECTROLYTE MEMBRANE; WATER-UPTAKE; TEMPERATURE; TRANSPORT; SIMULATION; MORPHOLOGY; DYNAMICS;
D O I
10.1007/s11581-014-1311-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An ideal proton exchange membrane (PEM) used in fuel cells must facilitate fast proton transport, insulate electron conduction, and exhibit adequate thermal and mechanical stability among others. One of the main issues with PEMs is the degradation of proton conductivity as a consequence of membrane dehydration. In this study, an effective bio-friendly solution is sought through the utilization of coconut-shell-based activated carbon (AC) that can act as a "molecular sponge". Our experimental results demonstrate almost an order of magnitude improvement in proton conductivity with only 0.7 % AC particles and a significant enhancement in water sorption of more than 80 % without any compromise in mechanical properties. The mechanism of proton conductivity enhancement in Nafion/AC composite membrane is elucidated, and a new model of proton conductivity as a function of filler content is proposed exhibiting three distinct phases of activated carbon influence.
引用
收藏
页码:1665 / 1674
页数:10
相关论文
共 54 条
[41]   Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells [J].
Rhee, CH ;
Kim, HK ;
Chang, H ;
Lee, JS .
CHEMISTRY OF MATERIALS, 2005, 17 (07) :1691-1697
[42]   Non-fluorinated polymer materials for proton exchange membrane fuel cells [J].
Rozière, J ;
Jones, DJ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :503-555
[43]   Structural and electrochemical investigation on re-cast Nafion membranes for polymer electrolyte fuel cells (PEFCs) application [J].
Sacca, A. ;
Carbone, A. ;
Pedicini, R. ;
Portale, G. ;
D'Ilario, L. ;
Longo, A. ;
Martorana, A. ;
Passalacqua, E. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 278 (1-2) :105-113
[44]   Endurance of Nafion-composite membranes in PEFCs operating at elevated temperature under low relative-humidity [J].
Sahu, A. K. ;
Jalajakshi, A. ;
Pitchumani, S. ;
Sridhar, P. ;
Shukla, A. K. .
JOURNAL OF CHEMICAL SCIENCES, 2012, 124 (02) :529-536
[45]   GAS PERMEATION PROPERTIES OF SOLID POLYMER ELECTROLYTE (SPE) MEMBRANES [J].
SAKAI, T ;
TAKENAKA, H ;
WAKABAYASHI, N ;
KAWAMI, Y ;
TORIKAI, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (06) :1328-1332
[46]   Applications of hybrid organic-inorganic nanocomposites [J].
Sanchez, C ;
Julián, B ;
Belleville, P ;
Popall, M .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (35-36) :3559-3592
[47]   Solution-cast Nafion® ionomer membranes:: preparation and characterization [J].
Silva, RF ;
De Francesco, M ;
Pozio, A .
ELECTROCHIMICA ACTA, 2004, 49 (19) :3211-3219
[48]   Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes [J].
Soboleva, Tatyana ;
Xie, Zhong ;
Shi, Zhiqing ;
Tsang, Emily ;
Navessin, Titichai ;
Holdcroft, Steven .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 622 (02) :145-152
[49]   Overview of the Development of the Fluoropolymer Industry [J].
Teng, Hongxiang .
APPLIED SCIENCES-BASEL, 2012, 2 (02) :496-512
[50]   Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications [J].
Thomassin, Jean-Michel ;
Kollar, Jozef ;
Caldarella, Giuseppe ;
Germain, Albert ;
Jerome, Robert ;
Detrembleur, Christophe .
JOURNAL OF MEMBRANE SCIENCE, 2007, 303 (1-2) :252-257