The Jacobi polynomial ensemble and the Painleve VI equation

被引:29
作者
Haine, L [1 ]
Semengue, JP [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
D O I
10.1063/1.532855
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Jacobi polynomial ensemble of n X n random matrices. We show that the probability of finding no eigenvalues in the interval [-1,z] for a random matrix chosen from the ensemble, viewed as a function of z, satisfies a second-order differential equation. After a simple change of variable, this equation can be reduced to the Okamoto-Jimbo-Miwa form of the Painleve VI equation. The result is achieved by a comparison of the Tracy-Widom and the Virasoro approaches to the problem, which both lead to different third-order differential equations. The Virasoro constraints satisfied by the tau functions are obtained by a systematic use of the moments, which drastically simplifies the computations. (C) 1999 American Institute of Physics. [S0022-2488(99)02203-3].
引用
收藏
页码:2117 / 2134
页数:18
相关论文
共 21 条
[1]   RANDOM MATRICES, VERTEX OPERATORS AND THE VIRASORO-ALGEBRA [J].
ADLER, M ;
SHIOTA, T ;
VANMOERBEKE, P .
PHYSICS LETTERS A, 1995, 208 (1-2) :67-78
[2]   Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials [J].
Adler, M ;
VanMoerbeke, P .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :863-911
[3]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[4]  
[Anonymous], LECTURE NOTES PHYSIC
[5]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[6]  
Chihara T. S., 1978, INTRO ORTHOGONAL POL, V13
[7]   MASTER SYMMETRIES AND R-MATRICES FOR THE TODA LATTICE [J].
DAMIANOU, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (02) :101-112
[8]   ON THE MASTER SYMMETRIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE [J].
FERNANDES, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :3797-3803
[9]  
Grunbaum F. A, 1997, PROG NONLIN, P143
[10]  
Haine L, 1995, ABELIAN VARIETIES, P85