Physical meaning for Mandelbrot and Julia sets

被引:59
作者
Beck, C [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICA D | 1999年 / 125卷 / 3-4期
关键词
D O I
10.1016/S0167-2789(98)00243-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamics of a kicked charged particle moving in a double-well potential and a time-dependent magnetic field. In certain cases the stroboscopic dynamics reduces to the complex logistic map, thus providing physical meaning for the Mandelbrot set. In other cases we obtain iterated function systems consisting of the inverse complex logistic map, thus providing physical meaning for Julia sets. Our approach can be generalized to complex mappings with a maximum of order q. (C)1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 23 条
[11]  
ECKMANN JP, 1985, LECT NOTES PHYSICS, V227
[12]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[13]   YANG-LEE ZEROS, JULIA SETS, AND THEIR SINGULARITY SPECTRA [J].
HU, B ;
LIN, B .
PHYSICAL REVIEW A, 1989, 39 (09) :4789-4796
[14]  
Huffel H., 1988, STOCHASTIC QUANTIZAT
[15]  
Julia G., 1918, J MATH PURE APPL, V4, P47
[16]  
Mandelbrot B.B., 1983, The fractal geometry of nature
[17]   1/S-EXPANSION FOR GENERALIZED DIMENSIONS IN A HIERARCHICAL S-STATE POTTS-MODEL [J].
OSBALDESTIN, AH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (20) :5951-5962
[18]  
Peitgen H.-O., 1986, The Beauty of Fractals Images of Complex Dynamical Systems
[19]  
Ruelle David, 1982, Ergodic Theory Dynam. Systems, V2, P99, DOI 10.1017/s0143385700009603
[20]   ASYMPTOTIC AND ESSENTIALLY SINGULAR SOLUTIONS OF THE FEIGENBAUM EQUATION [J].
THOMPSON, CJ ;
MCGUIRE, JB .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :991-1007