Physical meaning for Mandelbrot and Julia sets

被引:59
作者
Beck, C [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICA D | 1999年 / 125卷 / 3-4期
关键词
D O I
10.1016/S0167-2789(98)00243-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamics of a kicked charged particle moving in a double-well potential and a time-dependent magnetic field. In certain cases the stroboscopic dynamics reduces to the complex logistic map, thus providing physical meaning for the Mandelbrot set. In other cases we obtain iterated function systems consisting of the inverse complex logistic map, thus providing physical meaning for Julia sets. Our approach can be generalized to complex mappings with a maximum of order q. (C)1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 23 条
[1]  
Barnsley M. F., 2014, Fractals Everywhere
[2]   ON THE INVARIANT-SETS OF A FAMILY OF QUADRATIC MAPS [J].
BARNSLEY, MF ;
GERONIMO, JS ;
HARRINGTON, AN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (04) :479-501
[3]   CHAOTIC QUANTIZATION OF FIELD-THEORIES [J].
BECK, C .
NONLINEARITY, 1995, 8 (03) :423-441
[4]  
Beck C., 1993, THERMODYNAMICS CHAOT
[5]   FRACTAL AGGREGATES IN THE COMPLEX-PLANE [J].
BOHR, T ;
CVITANOVIC, P ;
JENSEN, MH .
EUROPHYSICS LETTERS, 1988, 6 (05) :445-450
[6]  
COLLET P, 1992, ANN I H POINCARE-PHY, V56, P91
[7]   COMPLEX UNIVERSALITY [J].
CVITANOVIC, P ;
MYRHEIM, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (02) :225-254
[8]   FRACTAL STRUCTURE OF ZEROS IN HIERARCHICAL-MODELS [J].
DERRIDA, B ;
DESEZE, L ;
ITZYKSON, C .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :559-569
[9]  
Douady A., 1994, P S APPL MATH, P91, DOI [10.1090/psapm/ 049/1315535, DOI 10.1090/PSAPM/049/1315535]
[10]   BOUNDS ON THE UNSTABLE EIGENVALUE FOR PERIOD DOUBLING [J].
ECKMANN, JP ;
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (02) :427-435