Matching of separatrix map and resonant dynamics, with application to global chaos onset between separatrices

被引:20
作者
Soskin, S. M. [1 ,3 ,5 ]
Mannella, R. [2 ]
Yevtushenko, O. M. [3 ,4 ]
机构
[1] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[4] Univ Munich, Dept Phys, D-80333 Munich, Germany
[5] Univ Lancaster, Dept Phys, Lancaster LA1 4YW, England
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.036221
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have developed a general method for the description of separatrix chaos, based on the analysis of the separatrix map dynamics. Matching it with the resonant Hamiltonian analysis, we show that, for a given amplitude of perturbation, the maximum width of the chaotic layer in energy may be much larger than it was assumed before. We use the above method to explain the drastic facilitation of global chaos onset in time-periodically perturbed Hamiltonian systems possessing two or more separatrices, previously discovered [S. M. Soskin, O. M. Yevtushenko, and R. Mannella, Phys. Rev. Lett. 90, 174101 (2003)]. The theory well agrees with simulations. We also discuss generalizations and applications. The method may be generalized for single-separatrix cases. The facilitation of global chaos onset may be relevant to a variety of systems, e. g., optical lattices, magnetic and semiconductor superlattices, meandering flows in the ocean, and spinning pendulums. Apart from dynamical transport, it may facilitate noise-induced transitions and the stochastic web formation.
引用
收藏
页数:29
相关论文
共 51 条
[1]  
Abramovitz M., 1970, HDB MATH FUNCTIONS
[2]  
Andronov A.A., 1966, THEORY OSCILLATORS
[3]  
Bogolyubov N., 1961, ASYMPTOTIC METHODS T
[4]   2-DIMENSIONAL ELECTRONS IN A LATERAL MAGNETIC SUPERLATTICE [J].
CARMONA, HA ;
GEIM, AK ;
NOGARET, A ;
MAIN, PC ;
FOSTER, TJ ;
HENINI, M ;
BEAUMONT, SP ;
BLAMIRE, MG .
PHYSICAL REVIEW LETTERS, 1995, 74 (15) :3009-3012
[5]   Channeling and percolation in two-dimensional chaotic dynamics [J].
Chaikovsky, D. K. ;
Zaslavsky, G. M. .
CHAOS, 1991, 1 (04) :463-472
[6]   STRONG CHANGING OF ADIABATIC INVARIANTS, KAM-TORI AND WEB-TORI [J].
CHERNIKOV, AA ;
NATENZON, MY ;
PETROVICHEV, BA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1988, 129 (07) :377-380
[7]   SOME PECULIARITIES OF STOCHASTIC LAYER AND STOCHASTIC WEB FORMATION [J].
CHERNIKOV, AA ;
NATENZON, MY ;
PETROVICHEV, BA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1987, 122 (01) :39-46
[8]   MINIMAL CHAOS AND STOCHASTIC WEBS [J].
CHERNIKOV, AA ;
SAGDEEV, RZ ;
USIKOV, DA ;
ZAKHAROV, MY ;
ZASLAVSKY, GM .
NATURE, 1987, 326 (6113) :559-563
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   Area preserving nontwist maps: Periodic orbits and transition to chaos [J].
delCastilloNegrete, D ;
Greene, JM ;
Morrison, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 91 (1-2) :1-23