Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy

被引:97
作者
Zeng, Xuehuo
Kinsella, Timothy J.
机构
[1] Case Western Reserve Univ, Univ Hosp Case Med Ctr, Dept Radiat Oncol, Cleveland, OH 44106 USA
[2] Univ Hosp Case Med Ctr, Case Comprehens Canc Ctr, Case Integrat Canc Biol Program, Cleveland, OH 44106 USA
关键词
D O I
10.1158/0008-5472.CAN-07-6163
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
DNA mismatch repair (MMR) ensures the fidelity of DNA replication and is required for activation of cell cycle arrest and apoptosis in response to certain classes of DNA damage. We recently reported that MMR is also implicated in initiation of an autophagic response after MMR processing of 6-thioguanine (6-TG). It is now generally believed that autophagy is negatively controlled by mammalian target of rapamycin (mTOR) activity. To determine whether mTOR is involved in 6-TG-induced autophagy, we used rapamycin, a potential anticancer agent, to inhibit mTOR activity. Surprisingly, we find that rapamycin cotreatment inhibits 6-TG-induced autophagy in MMR-proficient human colorectal cancer HCT116 (MLH1(+)) and HT29 cells as measured by LC3 immunoblotting, GFP-LC3 relocalization, and acridine orange staining. Consistently, short interfering RNA silencing of the 70-kDa ribosomal S6 kinase 1 (S6K1), the downstream effector of mTOR, markedly reduces 6-TG-induced autophagy. Furthermore, we show that inhibition of mTOR by rapamycin induces the activation of Akt as shown by increased Akt phosphorylation at Ser(473) and the inhibition of 6-TG-induced apoptosis and cell death. Activated Akt is a well-known inhibitor of autophagy. In conclusion, our data indicate that mTOR-S6K1 positively regulates autophagy after MMR processing of 6-TG probably through its negative feedback inhibition of Akt.
引用
收藏
页码:2384 / 2390
页数:7
相关论文
共 46 条
[1]   The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway [J].
Arico, S ;
Petiot, A ;
Bauvy, C ;
Dubbelhuis, PF ;
Meijer, AJ ;
Codogno, P ;
Ogier-Denis, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35243-35246
[2]   Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? [J].
Corradetti, M. N. ;
Guan, K-L .
ONCOGENE, 2006, 25 (48) :6347-6360
[3]   Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis [J].
Degenhardt, Kurt ;
Mathew, Robin ;
Beaudoin, Brian ;
Bray, Kevin ;
Anderson, Diana ;
Chen, Guanghua ;
Mukherjee, Chandreyee ;
Shi, Yufang ;
Gelinas, Celine ;
Fan, Yongjun ;
Nelson, Deirdre A. ;
Jin, Shengkan ;
White, Eileen .
CANCER CELL, 2006, 10 (01) :51-64
[5]   Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression [J].
Fingar, DC ;
Blenis, J .
ONCOGENE, 2004, 23 (18) :3151-3171
[6]  
Fink D, 1998, CLIN CANCER RES, V4, P1
[7]   Nutrient sensing in the mTOR/56K1 signalling pathway [J].
Gulati, P. ;
Thomas, G. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 :236-238
[8]   Restraining PI3K: mTOR signalling goes back to the membrane [J].
Harrington, LS ;
Findlay, GM ;
Lamb, RF .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (01) :35-42
[9]   The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins [J].
Harrington, LS ;
Findlay, GM ;
Gray, A ;
Tolkacheva, T ;
Wigfield, S ;
Rebholz, H ;
Barnett, J ;
Leslie, NR ;
Cheng, S ;
Shepherd, PR ;
Gout, I ;
Downes, CP ;
Lamb, RE .
JOURNAL OF CELL BIOLOGY, 2004, 166 (02) :213-223
[10]   Exploiting the PI3K/AKT pathway for cancer drug discovery [J].
Hennessy, BT ;
Smith, DL ;
Ram, PT ;
Lu, YL ;
Mills, GB .
NATURE REVIEWS DRUG DISCOVERY, 2005, 4 (12) :988-1004