Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster

被引:107
作者
Miron, M
Lasko, P
Sonenberg, N
机构
[1] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[2] McGill Univ, McGill Canc Ctr, Montreal, PQ H3G 1Y6, Canada
[3] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
关键词
D O I
10.1128/MCB.23.24.9117-9126.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.
引用
收藏
页码:9117 / 9126
页数:10
相关论文
共 58 条
[1]   Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease [J].
Backman, SA ;
Stambolic, V ;
Suzuki, A ;
Haight, J ;
Elia, A ;
Pretorius, J ;
Tsao, MS ;
Shannon, P ;
Bolon, B ;
Ivy, GO ;
Mak, TW .
NATURE GENETICS, 2001, 29 (04) :396-403
[2]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[3]   Drosophila's insulin/P13-kinase pathway coordinates cellular metabolism with nutritional conditions [J].
Britton, JS ;
Lockwood, WK ;
Li, L ;
Cohen, SM ;
Edgar, BA .
DEVELOPMENTAL CELL, 2002, 2 (02) :239-249
[4]   The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus [J].
Brunn, GJ ;
Fadden, P ;
Haystead, TAJ ;
Lawrence, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32547-32550
[5]   Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway [J].
Cho, KS ;
Lee, JH ;
Kim, S ;
Kim, D ;
Koh, H ;
Lee, J ;
Kim, C ;
Kim, J ;
Chung, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (11) :6144-6149
[6]   Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor [J].
Choi, KM ;
McMahon, LP ;
Lawrence, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :19667-19673
[7]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503
[8]   Size control in animal development [J].
Conlon, I ;
Raff, M .
CELL, 1999, 96 (02) :235-244
[9]  
Dufner A, 1999, MOL CELL BIOL, V19, P4525
[10]  
Fadden P, 1997, J BIOL CHEM, V272, P10240