A 3D Spatially Weighted Network for Segmentation of Brain Tissue From MRI

被引:59
作者
Sun, Liyan [1 ]
Ma, Wenao [1 ]
Ding, Xinghao [1 ]
Huang, Yue [1 ]
Liang, Dong [2 ]
Paisley, John [3 ,4 ]
机构
[1] Xiamen Univ, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[4] Columbia Univ, Data Sci Inst, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
Brain tissue segmentation; deep convolutional neural network; spatial weighting; multimodality MRI; AUTOMATIC SEGMENTATION; IMAGES; MODEL; CLASSIFICATION;
D O I
10.1109/TMI.2019.2937271
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The segmentation of brain tissue in MRI is valuable for extracting brain structure to aid diagnosis, treatment and tracking the progression of different neurologic diseases. Medical image data are volumetric and some neural network models for medical image segmentation have addressed this using a 3D convolutional architecture. However, this volumetric spatial information has not been fully exploited to enhance the representative ability of deep networks, and these networks have not fully addressed the practical issues facing the analysis of multimodal MRI data. In this paper, we propose a spatially-weighted 3D network (SW-3D-UNet) for brain tissue segmentation of single-modality MRI, and extend it using multimodality MRI data. We validate our model on the MRBrainS13 and MALC12 datasets. This unpublished model ranked first on the leaderboard of the MRBrainS13 Challenge.
引用
收藏
页码:898 / 909
页数:12
相关论文
共 36 条
[1]   Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data [J].
Andermatt, Simon ;
Pezold, Simon ;
Cattin, Philippe .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :142-151
[2]  
[Anonymous], 2009, P INT C NEUR INF PRO, DOI DOI 10.1109/NNSP.2000.889420
[3]   Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease [J].
Apostolova, Liana G. ;
Green, Amity E. ;
Babakchanian, Sona ;
Hwang, Kristy S. ;
Chou, Yi-Yu ;
Toga, Arthur W. ;
Thompson, Paul M. .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2012, 26 (01) :17-27
[4]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[5]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[6]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[7]  
de Brebisson Alexandre, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P20, DOI 10.1109/CVPRW.2015.7301312
[8]   HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation [J].
Dolz, Jose ;
Gopinath, Karthik ;
Yuan, Jing ;
Lombaert, Herve ;
Desrosiers, Christian ;
Ben Ayed, Ismail .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) :1116-1126
[9]   State-of-the-Art Methods for Brain Tissue Segmentation: A Review [J].
Dora L. ;
Agrawal S. ;
Panda R. ;
Abraham A. .
IEEE Reviews in Biomedical Engineering, 2017, 10 :235-249
[10]   3D deeply supervised network for automated segmentation of volumetric medical images [J].
Dou, Qi ;
Yu, Lequan ;
Chen, Hao ;
Jin, Yueming ;
Yang, Xin ;
Qin, Jing ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2017, 41 :40-54