Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain

被引:58
作者
Kukavica, Igor [2 ]
Temam, Roger [3 ]
Vicol, Vlad C. [1 ]
Ziane, Mohammed [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Hydrostatic Euler equations; Non-viscous primitive equations; Hydrostatic approximation; Well-posedness; Bounded domain; Analyticity; NAVIER-STOKES EQUATION; PRIMITIVE EQUATIONS; PRANDTL EQUATIONS; WELL-POSEDNESS; ANALYTICITY; VISCOSITY; DERIVATION; ABSENCE; THEOREM; OCEAN;
D O I
10.1016/j.jde.2010.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the question of well-posedness in spaces of analytic functions for the Cauchy problem for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary. By a suitable extension of the Cauchy-Kowalewski theorem we construct a locally in time, unique, real-analytic solution and give an explicit rate of decay of the radius of real-analyticity. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1719 / 1746
页数:28
相关论文
共 28 条
[1]   A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM [J].
ASANO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) :102-105
[2]  
BARDOS C., 1977, ANN SCUOLA NORM-SCI, V4, P647
[3]   Remarks on the derivation of the hydrostatic Euler equations [J].
Brenier, Y .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07) :585-595
[4]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[5]  
Grenier E, 1999, ESAIM-MATH MODEL NUM, V33, P965
[6]  
Grenier E, 2000, COMMUN PUR APPL MATH, V53, P1067
[7]  
Hadamard J., 1953, PHYS TODAY, V6, P18, DOI [10.1063/1.3061337, DOI 10.1063/1.3061337]
[8]  
KUKAVICA I, DISCRETE CO IN PRESS
[9]  
Kukavica I, 2009, P AM MATH SOC, V137, P669
[10]   Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data [J].
Kukavica, Igor ;
Temam, Roger ;
Vicol, Vlad ;
Ziane, Mohammed .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) :639-645