Hypergeometric forms for ising-class integrals

被引:14
作者
Bailey, D. H. [1 ]
Borwein, D.
Borwein, J. M.
Crandall, R. E.
机构
[1] Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[3] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 2W5, Canada
[4] Ctr Adv Comp, Reed Coll, Portland, OR USA
关键词
numerical quadrature; numerical integration; arbitrary precision;
D O I
10.1080/10586458.2007.10129003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply experimental -mathematical principles to analyze the integrals [GRAPHICS] These are generalizations of a previous integral C-n := C-n,C-1 relevant to the Ising theory of solid-state physics [Bailey et al. 06]. We find representations of the C-n,C-k in terms of Meijer G-functions and nested Barnes integrals. Our investigations began by computing 500-digit numerical values Of C-n,C-k for all integers n, k, where n is an element of [2,12].and k is an element of [0, 25]. We found that some C-n,C-k enjoy exact evaluations involving Dirichlet L-functions or the Riemann zeta function. In the process of analyzing hypergeometric representations, we found-experimentally and strikingly-that the C-n,C-k almost certainly satisfy certain interindicial relations including discrete k-recurrences. Using generating functions, differential theory, complex analysis, and Wilf-Zeilberger algorithms we are able to prove some central cases of these relations.
引用
收藏
页码:257 / 276
页数:20
相关论文
共 52 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   The evaluation of integrals of Bessel functions via G-function identities [J].
Adamchik, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 64 (03) :283-290
[3]  
ADAMCHIK V, 2006, COMMUNICATION MAR
[4]  
ALMKVIST G, 2004, MATHNT0402386
[5]  
[Anonymous], P ACM INT C SYMB ALG
[6]  
Apery R., 1979, Asterisque, V61, P11
[7]   Integrals of the Ising class [J].
Bailey, D. H. ;
Borwein, J. M. ;
Crandall, R. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40) :12271-12302
[8]  
Bailey D. H., 2005, HIGHLY PARALLEL HIGH
[9]   A comparison of three high-precision quadrature schemes [J].
Bailey, DH ;
Jeyabalan, K ;
Li, XS .
EXPERIMENTAL MATHEMATICS, 2005, 14 (03) :317-329
[10]  
Bailey DH, 2002, ARPREC: an arbitrary precision computation package