Predicting Esophageal Fistula Risks Using a Multimodal Self-attention Network

被引:6
作者
Guan, Yulu [1 ]
Cui, Hui [1 ]
Xu, Yiyue [2 ]
Jin, Qiangguo [3 ]
Feng, Tian [4 ]
Tu, Huawei [1 ]
Xuan, Ping [5 ]
Li, Wanlong [2 ]
Wang, Linlin [2 ]
Duh, Been-Lirn [1 ]
机构
[1] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic, Australia
[2] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Radiat Oncol, Jinan, Peoples R China
[3] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[4] Zhejiang Univ, Sch Software Technol, Hangzhou, Peoples R China
[5] Heilongjiang Univ, Dept Comp Sci & Technol, Harbin, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V | 2021年 / 12905卷
关键词
Esophageal fistula prediction; Self attention; Multimodal attention;
D O I
10.1007/978-3-030-87240-3_69
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiotherapy plays a vital role in treating patients with esophageal cancer (EC), whereas potential complications such as esophageal fistula (EF) can be devastating and even life-threatening. Therefore, predicting EF risks prior to radiotherapies for EC patients is crucial for their clinical treatment and quality of life. We propose a novel method of combining thoracic Computerized Tomography (CT) scans and clinical tabular data to improve the prediction of EF risks in EC patients. The multimodal network includes encoders to extract salient features from images and clinical data, respectively. In addition, we devise a self-attention module, named VisText, to uncover the complex relationships and correlations among different features. The associated multimodal features are integrated with clinical features by aggregation to further enhance prediction accuracy. Experimental results indicate that our method classifies EF status for EC patients with an accuracy of 0.8366, F1 score of 0.7337, specificity of 0.9312 and AUC of 0.9119, outperforming other methods in comparison.
引用
收藏
页码:721 / 730
页数:10
相关论文
共 22 条
  • [11] Silva LAV, 2020, I S BIOMED IMAGING, P568, DOI [10.1109/ISBI45749.2020.9098665, 10.1109/isbi45749.2020.9098665]
  • [12] 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma
    Starke, Sebastian
    Leger, Stefan
    Zwanenburg, Alex
    Leger, Karoline
    Lohaus, Fabian
    Linge, Annett
    Schreiber, Andreas
    Kalinauskaite, Goda
    Tinhofer, Inge
    Guberina, Nika
    Guberina, Maja
    Balermpas, Panagiotis
    von der Grun, Jens
    Ganswindt, Ute
    Belka, Claus
    Peeken, Jan C.
    Combs, Stephanie E.
    Boeke, Simon
    Zips, Daniel
    Richter, Christian
    Troost, Esther G. C.
    Krause, Mechthild
    Baumann, Michael
    Loeck, Steffen
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [13] Tao Xu, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P115, DOI 10.1007/978-3-319-46723-8_14
  • [14] Risk Factors for Esophageal Fistula Associated With Chemoradiotherapy for Locally Advanced Unresectable Esophageal Cancer A Supplementary Analysis of JCOG0303
    Tsushima, Takahiro
    Mizusawa, Junki
    Sudo, Kazuki
    Honma, Yoshitaka
    Kato, Ken
    Igaki, Hiroyasu
    Tsubosa, Yasuhiro
    Shinoda, Masayuki
    Nakamura, Kenichi
    Fukuda, Haruhiko
    Kitagawa, Yuko
    [J]. MEDICINE, 2016, 95 (20)
  • [15] Vaswani A, 2017, ADV NEUR IN, V30
  • [16] Non-local Neural Networks
    Wang, Xiaolong
    Girshick, Ross
    Gupta, Abhinav
    He, Kaiming
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7794 - 7803
  • [17] Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
    Wu, Zifeng
    Shen, Chunhua
    van den Hengel, Anton
    [J]. PATTERN RECOGNITION, 2019, 90 : 119 - 133
  • [18] Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer
    Xu, Yiyue
    Wang, Linlin
    He, Bo
    Li, Wanlong
    Wen, Qiang
    Wang, Shijiang
    Sun, Xindong
    Meng, Xue
    Yu, Jinming
    [J]. RADIATION ONCOLOGY, 2019, 14 (01)
  • [19] Multimodal skin lesion classification using deep learning
    Yap, Jordan
    Yolland, William
    Tschandl, Philipp
    [J]. EXPERIMENTAL DERMATOLOGY, 2018, 27 (11) : 1261 - 1267
  • [20] Cross-Modal Self-Attention Network for Referring Image Segmentation
    Ye, Linwei
    Rochan, Mrigank
    Liu, Zhi
    Wang, Yang
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10494 - 10503