Multibump solutions for a class of nonlinear elliptic problems

被引:4
作者
Musso, M [1 ]
Passaseo, D [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
D O I
10.1007/s005260050099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with a class of semilinear elliptic Dirichlet problems approximating degenerate equations. By using variational methods, it is proved that, if the degeneration set consists of k connected components, then there exist at least 2(k) - 1 multibump positive solutions.
引用
收藏
页码:53 / 86
页数:34
相关论文
共 35 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]  
ALMEIDA L, 1995, CR ACAD SCI I-MATH, V320, P935
[3]  
[Anonymous], GINZBURG LANDAU VORT
[4]  
BAHRI A, 1995, CALC VAR PARTIAL DIF, V3, P67, DOI 10.1007/s005260050007
[5]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[6]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[7]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[8]  
Benci V., 1991, NONLINEAR ANAL TRIBU, P93
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]  
BREZIS H, 1986, COMMUN PUR APPL MATH, V39, P17