A NEW QUANTITATIVE TWO WEIGHT THEOREM FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

被引:0
作者
Perez, Carlos [1 ]
Rela, Ezequiel [1 ]
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
关键词
Two weight theorem; space of homogeneous type; Muckenhoupt weights; Calderon-Zygmund; maximal functions; NORM INEQUALITIES; SPACES; INTEGRALS; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantitative two weight theorem for the Hardy-Littlewood maximal operator is proved, improving the known ones. As a consequence, a new proof of the main results in papers by Hytonen and the first author and Hytonen, the first author and Rela is obtained which avoids the use of the sharp quantitative reverse Holder inequality for A(infinity) proved in those papers. Our results are valid within the context of spaces of homogeneous type without imposing the non-empty annuli condition.
引用
收藏
页码:641 / 655
页数:15
相关论文
共 23 条
[1]   SINGULAR-INTEGRALS AND APPROXIMATE IDENTITIES ON SPACES OF HOMOGENEOUS TYPE [J].
AIMAR, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :135-153
[2]   WEIGHTED NORM INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON SPACES OF HOMOGENEOUS TYPE [J].
AIMAR, H ;
MACIAS, RA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (02) :213-216
[3]  
Beznosova Oleksandra, 2012, PREPRINT
[4]  
Duoandikoetxea Javier, 2013, COMMUNICATION
[5]  
Fujii N., 1977, MATH JPN, V22, P529
[6]  
GarciaCuerva J., 1985, North-Holland Mathematics Studies, V116
[7]  
Genebashvili Ioseb, 1998, PITMAN MONOGRAPHS SU, V92
[9]   SHARP WEIGHTED BOUNDS INVOLVING A∞ [J].
Hytoenen, Tuomas ;
Perez, Carlos .
ANALYSIS & PDE, 2013, 6 (04) :777-818
[10]   Sharp Reverse Holder property for A∞ weights on spaces of homogeneous type [J].
Hytonen, Tuomas ;
Perez, Carlos ;
Rela, Ezequiel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (12) :3883-3899