Building blocks of a flip-chip integrated superconducting quantum processor

被引:65
作者
Kosen, Sandoko [1 ]
Li, Hang-Xi [1 ]
Rommel, Marcus [1 ]
Shiri, Daryoush [1 ]
Warren, Christopher [1 ]
Gronberg, Leif [2 ]
Salonen, Jaakko [2 ]
Abad, Tahereh [1 ]
Biznarova, Janka [1 ]
Caputo, Marco [2 ]
Chen, Liangyu [1 ]
Grigoras, Kestutis [2 ]
Johansson, Goran [1 ]
Kockum, Anton Frisk [1 ]
Krizan, Christian [1 ]
Lozano, Daniel Perez [1 ,5 ]
Norris, Graham J. [3 ]
Osman, Amr [1 ]
Fernandez-Pendas, Jorge [1 ]
Ronzani, Alberto [2 ]
Roudsari, Anita Fadavi [1 ]
Simbierowicz, Slawomir [2 ,6 ]
Tancredi, Giovanna [1 ]
Wollraff, Andreas [3 ,4 ]
Eichler, Christopher [3 ]
Govenius, Joonas [2 ]
Bylander, Jonas [1 ]
机构
[1] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[2] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
[3] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Quantum Ctr, CH-8093 Zurich, Switzerland
[5] IMEC, B-3001 Leuven, Belgium
[6] Bluefors Oy, Helsinki 00370, Finland
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
transmon; superconducting qubit; design and simulation; coherence times; gate fidelities; flip-chip integration; QUBITS;
D O I
10.1088/2058-9565/ac734b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips-one quantum chip and one control chip-that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90 mu s, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.
引用
收藏
页数:9
相关论文
共 23 条
[21]   Implementation and Readout of Maximally Entangled Two-Qubit Gates Quantum Circuits in a Superconducting Quantum Processor [J].
Stasino, V. ;
Mastrovito, P. ;
Cosenza, C. ;
Levochkina, A. ;
Esposito, M. ;
Montemurro, D. ;
Pepe, G. P. ;
Bruno, A. ;
Tafuri, F. ;
Massarotti, D. ;
Ahmad, H. G. .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2025, 38 (02)
[22]   Quantum neuronal sensing of quantum many-body states on a 61-qubit programmable superconducting processor [J].
Gong, Ming ;
Huang, He-Liang ;
Wang, Shiyu ;
Guo, Chu ;
Li, Shaowei ;
Wu, Yulin ;
Zhu, Qingling ;
Zhao, Youwei ;
Guo, Shaojun ;
Qian, Haoran ;
Ye, Yangsen ;
Zha, Chen ;
Chen, Fusheng ;
Ying, Chong ;
Yu, Jiale ;
Fan, Daojin ;
Wu, Dachao ;
Su, Hong ;
Deng, Hui ;
Rong, Hao ;
Zhang, Kaili ;
Cao, Sirui ;
Lin, Jin ;
Xu, Yu ;
Sun, Lihua ;
Guo, Cheng ;
Li, Na ;
Liang, Futian ;
Sakurai, Akitada ;
Nemoto, Kae ;
Munro, William J. ;
Huo, Yong-Heng ;
Lu, Chao-Yang ;
Peng, Cheng-Zhi ;
Zhu, Xiaobo ;
Pan, Jian-Wei .
SCIENCE BULLETIN, 2023, 68 (09) :906-912
[23]   Integrated Circuits for Quantum Machine Learning Based on Superconducting Artificial Atoms and Methods of Their Control [J].
Tolstobrov, A. E. ;
Kadyrmetov, Sh. V. ;
Fedorov, G. P. ;
Sanduleanu, S. V. ;
Lubsanov, V. B. ;
Kalacheva, D. A. ;
Bolgar, A. N. ;
Dmitriev, A. Yu. ;
Korostylev, E. V. ;
Tikhonov, K. S. ;
Astafiev, O. V. .
RADIOPHYSICS AND QUANTUM ELECTRONICS, 2024, 66 (11) :907-928