ON THE IMAGE OF GALOIS l-ADIC REPRESENTATIONS FOR ABELIAN VARIETIES OF TYPE III

被引:14
作者
Banaszak, Grzegorz [1 ]
Gajda, Wojciech [1 ]
Krason, Piotr [2 ]
机构
[1] Adam Mickiewicz Univ Poznan, Dept Math, PL-61614 Poznan, Poland
[2] Tech Univ Szczecin, Dept Math, PL-70415 Szczecin, Poland
关键词
l-adic representation; abelian variety; Lie algebra; linear algebraic group; MUMFORD-TATE CONJECTURE; NUMBER-FIELDS; REAL MULTIPLICATIONS; HODGE CLASSES; FINITENESS; REDUCTION; POINTS;
D O I
10.2748/tmj/1277298644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the image of the l-adic representation attached to the Tate module of an abelian variety defined over a number field. We consider simple abelian varieties of type III in the Albert classification. We compute the image of the l-adic and mod l Galois representations and we prove the Mumford-Tate and Lang conjectures for a wide class of simple abelian varieties of type III.
引用
收藏
页码:163 / 189
页数:27
相关论文
共 38 条
[1]  
[Anonymous], 2013, ALGEBRAIC GEOM
[2]   On Galois representations for abelian varieties with complex and real multiplications [J].
Banaszak, G ;
Gajda, W ;
Krason, P .
JOURNAL OF NUMBER THEORY, 2003, 100 (01) :117-132
[3]  
Bogomolov F.A., 1980, C. R. Acad. Sci. Paris Sr. A-B, V290, pA701
[4]  
BOURBAKI N, 1975, GROUPES ALGEBRES LIE
[5]  
Chi W., 1990, Bull. Inst. Math. Acad. Sin, V18, P85
[7]  
Deligne P, 1982, Lecture Notes in Mathematics, V900, P1, DOI DOI 10.1007/978-3-540-38955-23
[8]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[9]  
Gordon B. B., 1999, SURVEY HODGE CONJECT, P297
[10]  
HUMPHREYS JE, 1975, LINEAR ALGEBRAIC GRO