High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution

被引:83
作者
Wang, Hsin-Ping [1 ,2 ,6 ,7 ]
Sun, Ke [2 ]
Noh, Sun Young [4 ]
Kargar, Alireza [2 ]
Tsai, Meng-Lin [1 ]
Huang, Ming-Yi [3 ]
Wang, Deli [2 ,4 ,5 ]
He, Jr-Hau [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] AU Optron Corp, Adv Technol Dept, Taichung, Taiwan
[4] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Qualcomm Inst, La Jolla, CA 92093 USA
[6] Natl Taiwan Univ, Inst Photon & Optoelect, Taipei 10617, Taiwan
[7] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
基金
美国国家科学基金会;
关键词
Si heterojunction photoelectrodes; oxygen evolution; hydrogen evolution; solar to oxygen conversion efficiency; solar to hydrogen conversion efficiency; WATER OXIDATION; SOLAR-CELLS; SILICON PHOTOANODES; EFFICIENT; LAYER; TIO2; INTERFACES; FILMS;
D O I
10.1021/nl5041463
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amorphous Si :(a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm(2) at the equilibrium water oxidation potential. The SiHJ photocathode with 2 rim sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes.
引用
收藏
页码:2817 / 2824
页数:8
相关论文
共 45 条
[1]  
[Anonymous], **NON-TRADITIONAL**
[2]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219
[3]  
Chen YW, 2011, NAT MATER, V10, P539, DOI [10.1038/NMAT3047, 10.1038/nmat3047]
[4]   Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J].
Chen, Zhebo ;
Jaramillo, Thomas F. ;
Deutsch, Todd G. ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Gaillard, Nicolas ;
Garland, Roxanne ;
Takanabe, Kazuhiro ;
Heske, Clemens ;
Sunkara, Mahendra ;
McFarland, Eric W. ;
Domen, Kazunari ;
Miller, Eric L. ;
Turner, John A. ;
Dinh, Huyen N. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :3-16
[5]   Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution [J].
Choi, Mi Jin ;
Jung, Jin-Young ;
Park, Min-Joon ;
Song, Jae-Won ;
Lee, Jung-Ho ;
Bang, Jin Ho .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (09) :2928-2933
[7]   Interfaces between water splitting catalysts and buried silicon junctions [J].
Cox, Casandra R. ;
Winkler, Mark T. ;
Pijpers, Joep J. H. ;
Buonassisi, Tonio ;
Nocera, Daniel G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) :532-538
[8]  
Esposito DV, 2013, NAT MATER, V12, P562, DOI [10.1038/NMAT3626, 10.1038/nmat3626]
[9]   Anodic corrosion of indium tin oxide films induced by the electrochemical oxidation of chlorides [J].
Folcher, G ;
Cachet, H ;
Froment, M ;
Bruneaux, J .
THIN SOLID FILMS, 1997, 301 (1-2) :242-248
[10]   Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies [J].
Greiner, Mark T. ;
Chai, Lily ;
Helander, Michael G. ;
Tang, Wing-Man ;
Lu, Zheng-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4557-4568