Non-uniform order mixed FEM approximation: Implementation, post-processing, computable error bound and adaptivity

被引:18
作者
Ainsworth, Mark [1 ]
Ma, Xinhui [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Posteriori error estimation; Mixed finite element method; Computable error bounds; Electromagnetics; Flow in porous media; Post-processing; FINITE-ELEMENT METHODS; ESTIMATORS; EQUATIONS;
D O I
10.1016/j.jcp.2011.09.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The present work provides a straightforward and focused set of tools and corresponding theoretical support for the implementation of an adaptive high order finite element code with guaranteed error control for the approximation of elliptic problems in mixed form. The work contains: details of the discretisation using non-uniform order mixed finite elements of arbitrarily high order; a new local post-processing scheme for the primary variable; the use of the post-processing scheme in the derivation of new, fully computable bounds for the error in the flux variable; and, an hp-adaptive refinement strategy based on the a posteriori error estimator. Numerical examples are presented illustrating the results obtained when the procedure is applied to a challenging problem involving a ten-pole electric motor with singularities arising from both geometric features and discontinuities in material properties. The procedure is shown to be capable of producing high accuracy numerical approximations with relatively modest numbers of unknowns. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 23 条
[1]   Hierarchic finite element bases on unstructured tetrahedral meshes [J].
Ainsworth, M ;
Coyle, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (14) :2103-2130
[2]   hp-approximation theory for BDFM and RT finite elements on quadrilaterals [J].
Ainsworth, M ;
Pinchedez, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2047-2068
[3]   Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers [J].
Ainsworth, M ;
Senior, B .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 150 (1-4) :65-87
[4]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[5]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[6]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[7]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[8]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444
[9]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[10]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476