Theoretical study of photoluminescence spectroscopy of strong exciton-polariton coupling in dielectric nanodisks with anapole states

被引:16
作者
Gerislioglu, B. [1 ]
Ahmadivand, A. [2 ]
机构
[1] Rice Univ, Dept Phys & Astron, 6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA
关键词
Anapole resonance; Excitonic materials; Photonics; Light-matter coupling; Luminescence analysis; 3RD HARMONIC-GENERATION; MOLECULAR EXCITONS; MATTER; TEMPERATURE; PHOTONICS; EMISSION;
D O I
10.1016/j.mtchem.2020.100254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor nanoparticles and nanostructures in the strong coupling regime exhibit an intriguing energy scale in the optical frequencies, which is specified by the Rabi splitting between the upper and lower exciton-polariton states. Technically, exciton-polaritons are part-light, part-matter quasiparticles that arise from the strong interaction of excitonic substances and photonic platforms. In this work, using full-wave numerical and theoretical studies, we showed the emergence of strong light-matter coupling between the nonradiating anapole states from an individual semiconductor nanodisk coupled to a J-aggregate fluorescent dye molecule resonating in the visible spectrum. By demonstrating the physical mechanism behind the observed energy splitting for various Lorentzian linewidth of excitonic material, we theoretically confirmed the obtained spectral responses by conducting photoluminescence spectroscopy analysis. The coupling of anapole resonances in semiconductor nanoparticles with excitonic levels can propose interesting possibilities for the control of directional light scattering in the strong coupling limit, and the dynamic tuning of deep-subwavelength light-matter coupled states by external stimuli. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 52 条
[21]   Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer [J].
Hestand, Nicholas J. ;
Spano, Frank C. .
CHEMICAL REVIEWS, 2018, 118 (15) :7069-7163
[22]   SPONTANEOUS EMISSION DUE TO EXCITON-ELECTRON SCATTERING IN SEMICONDUCTORS [J].
HONERLAGE, B ;
KLINGSHIRN, C ;
GRUN, JB .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 78 (02) :599-608
[23]   Toroidal Dipolar Response in a Metamaterial [J].
Kaelberer, T. ;
Fedotov, V. A. ;
Papasimakis, N. ;
Tsai, D. P. ;
Zheludev, N. I. .
SCIENCE, 2010, 330 (6010) :1510-1512
[24]   Semiconductor excitons in new light [J].
Koch, S. W. ;
Kira, M. ;
Khitrova, G. ;
Gibbs, H. M. .
NATURE MATERIALS, 2006, 5 (07) :523-531
[25]   All-optical excitonic transistor [J].
Kuznetsova, Y. Y. ;
Remeika, M. ;
High, A. A. ;
Hammack, A. T. ;
Butov, L. V. ;
Hanson, M. ;
Gossard, A. C. .
OPTICS LETTERS, 2010, 35 (10) :1587-1589
[26]   Measured mutual coupling between linearly tapered slot antennas [J].
Lee, RQ ;
Simons, RN .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (08) :1320-1322
[27]  
Li KH, 2015, NAT NANOTECHNOL, V10, P140, DOI [10.1038/NNANO.2014.308, 10.1038/nnano.2014.308]
[28]   Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit [J].
Liu, Renming ;
Zhou, Zhang-Kai ;
Yu, Yi-Cong ;
Zhang, Tengwei ;
Wang, Hao ;
Liu, Guanghui ;
Wei, Yuming ;
Chen, Huanjun ;
Wang, Xue-Hua .
PHYSICAL REVIEW LETTERS, 2017, 118 (23)
[29]  
Mak KF, 2016, NAT PHOTONICS, V10, P216, DOI [10.1038/NPHOTON.2015.282, 10.1038/nphoton.2015.282]
[30]   Simulation of J-aggregate microcavity photoluminescence [J].
Michetti, Paolo ;
La Rocca, Giuseppe C. .
PHYSICAL REVIEW B, 2008, 77 (19)