Cavity-Enhanced Transport of Charge

被引:132
作者
Hagenmueller, David [1 ,2 ,3 ]
Schachenmayer, Johannes [1 ,2 ,3 ]
Schutz, Stefan [1 ,2 ,3 ]
Genes, Claudiu [1 ,2 ,3 ,4 ]
Pupillo, Guido [1 ,2 ,3 ]
机构
[1] Univ Strasbourg, IPCMS UMR 7504, F-67000 Strasbourg, France
[2] Univ Strasbourg, ISIS UMR 7006, F-67000 Strasbourg, France
[3] CNRS, F-67000 Strasbourg, France
[4] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
关键词
SINGLE QUANTUM-DOT; BOSE-EINSTEIN CONDENSATION; SEMICONDUCTOR MICROCAVITY; ROOM-TEMPERATURE; POLARITON CONDENSATE; SUPERCONDUCTIVITY; COLLOQUIUM; NANOCAVITY; NANOWIRES; PLASMONS;
D O I
10.1103/PhysRevLett.119.223601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically investigate charge transport through electronic bands of a mesoscopic one-dimensional system, where interband transitions are coupled to a confined cavity mode, initially prepared close to its vacuum. This coupling leads to light-matter hybridization where the dressed fermionic bands interact via absorption and emission of dressed cavity photons. Using a self-consistent nonequilibrium Green's function method, we compute electronic transmissions and cavity photon spectra and demonstrate how light-matter coupling can lead to an enhancement of charge conductivity in the steady state. We find that depending on cavity loss rate, electronic bandwidth, and coupling strength, the dynamics involves either an individual or a collective response of Bloch states, and we explain how this affects the current enhancement. We show that the charge conductivity enhancement can reach orders of magnitudes under experimentally relevant conditions.
引用
收藏
页数:6
相关论文
共 86 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Microcavity controlled coupling of excitonic qubits [J].
Albert, F. ;
Sivalertporn, K. ;
Kasprzak, J. ;
Strauss, M. ;
Schneider, C. ;
Hofling, S. ;
Kamp, M. ;
Forchel, A. ;
Reitzenstein, S. ;
Muljarov, E. A. ;
Langbein, W. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Collective fluid dynamics of a polariton condensate in a semiconductor microcavity [J].
Amo, A. ;
Sanvitto, D. ;
Laussy, F. P. ;
Ballarini, D. ;
del Valle, E. ;
Martin, M. D. ;
Lemaitre, A. ;
Bloch, J. ;
Krizhanovskii, D. N. ;
Skolnick, M. S. ;
Tejedor, C. ;
Vina, L. .
NATURE, 2009, 457 (7227) :291-U3
[4]  
[Anonymous], 1995, ELECT TRANSPORT MESO
[5]  
[Anonymous], 1994, PHYS REV A, V50, P1830
[6]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[7]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Solid State Electrically Injected Exciton-Polariton Laser [J].
Bhattacharya, Pallab ;
Xiao, Bo ;
Das, Ayan ;
Bhowmick, Sishir ;
Heo, Junseok .
PHYSICAL REVIEW LETTERS, 2013, 110 (20)
[9]   DIRECT CALCULATION OF TUNNELLING CURRENT .4. ELECTRON-PHONON INTERACTION EFFECTS [J].
CAROLI, C ;
SAINTJAM.D ;
COMBESCO.R ;
NOZIERES, P .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (01) :21-&
[10]   DIRECT CALCULATION OF TUNNELING CURRENT [J].
CAROLI, C ;
COMBESCO.R ;
NOZIERES, P ;
SAINTJAM.D .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (08) :916-&