Creation of half-metallic f-orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

被引:12
作者
Cui, Bin [1 ,2 ]
Huang, Bing [2 ,3 ]
Li, Chong [2 ,4 ]
Zhang, Xiaoming [1 ,2 ]
Jin, Kyung-Hwan [2 ]
Zhang, Lizhi [2 ]
Jiang, Wei [2 ]
Liu, Desheng [1 ,5 ]
Liu, Feng [2 ,6 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Henan, Peoples R China
[5] Jining Univ, Dept Phys, Qufu 273155, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
关键词
TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GRAPHENE NANORIBBONS; ROOM-TEMPERATURE; C-20; TRANSISTORS; SUPERATOMS; FULLERENE; FRAMEWORK; CRYSTAL;
D O I
10.1103/PhysRevB.96.085134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f-orbital Dirac fermion from superlight sp elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C-20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f-molecular orbitals (MOs) derived from sp-atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.
引用
收藏
页数:6
相关论文
共 43 条
[1]  
Aoyagi S, 2010, NAT CHEM, V2, P678, DOI [10.1038/nchem.698, 10.1038/NCHEM.698]
[2]   NEW CLASS OF MATERIALS - HALF-METALLIC FERROMAGNETS [J].
DEGROOT, RA ;
MUELLER, FM ;
VANENGEN, PG ;
BUSCHOW, KHJ .
PHYSICAL REVIEW LETTERS, 1983, 50 (25) :2024-2027
[3]   Dilute ferromagnetic semiconductors: Physics and spintronic structures [J].
Dietl, Tomasz ;
Ohno, Hideo .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :187-251
[4]   Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs [J].
Dong, JW ;
Chen, LC ;
Palmstrom, CJ ;
James, RD ;
McKernan, S .
APPLIED PHYSICS LETTERS, 1999, 75 (10) :1443-1445
[5]   Induced magnetic ordering by proton irradiation in graphite -: art. no. 227201 [J].
Esquinazi, P ;
Spemann, D ;
Höhne, R ;
Setzer, A ;
Han, KH ;
Butz, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (22)
[6]  
Frisch M.J., 2009, Computer Code GAUSSIAN 09
[7]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[8]   Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory [J].
Gonze, X ;
Lee, C .
PHYSICAL REVIEW B, 1997, 55 (16) :10355-10368
[9]   LANTHANUM COMPLEXES OF SPHEROIDAL CARBON SHELLS [J].
HEATH, JR ;
OBRIEN, SC ;
ZHANG, Q ;
LIU, Y ;
CURL, RF ;
KROTO, HW ;
TITTEL, FK ;
SMALLEY, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (25) :7779-7780
[10]   Half metal in two-dimensional hexagonal organometallic framework [J].
Hu, Hao ;
Wang, Zhengfei ;
Liu, Feng .
NANOSCALE RESEARCH LETTERS, 2014, 9