Matrix Riemann-Hilbert problems and factorization on Riemann surfaces

被引:8
作者
Camara, M. C. [1 ]
dos Santos, A. F. [1 ]
dos Santos, Pedro F. [2 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Ctr Anal Func & Aplicacoes, Inst Super Tecn, P-1096 Lisbon, Portugal
[2] Univ Tecn Lisboa, Dept Matemat, Ctr Anal Geometria & Sistemas, Inst Super Tecn, P-1096 Lisbon, Portugal
关键词
Riemann-Hilbert problem; factorization; Riemann surfaces; integrable systems;
D O I
10.1016/j.jfa.2008.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Wiener-Hopf factorization of 2 x 2 matrix functions and its close relation to scalar Riemann-Hilbert problems on Riemann surfaces is investigated. A family of function classes denoted C (Q(1), Q(2)) is defined. To each class C(Q(1), Q(2)) a Riemann surface Sigma is associated, so that the factorization of the elements of C(Q(1), Q(2)) is reduced to solving a scalar Riemann-Hilbert problem on Sigma. For the solution of this problem, a notion of Sigma-factorization is introduced and a factorization theorem is presented. An example of the factorization of a function belonging to the group of exponentials of rational functions is studied. This example may be seen as typical of applications of the results of this paper to finite-dimensional integrable systems. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 254
页数:27
相关论文
共 17 条
[1]  
AKHIEZER NI, 1990, MATH MONOGR AM MATH, V79
[2]  
Bottcher A., 2006, Analysis of Toeplitz operators
[3]  
Camara M.C., 2007, PORT MATH, V64, P509
[4]   Explicit Wiener-Hopf factorization and nonlinear Riemann-Hilbert problems [J].
Câmara, MC ;
dos Santos, AF ;
Carpentier, MP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :45-74
[5]  
Clancey K., 1981, OPERATOR THEORY ADV, V3
[6]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[7]  
Guest M.A., 1997, LONDON MATH SOC STUD, V38
[8]  
HITCHIN NJ, 1999, OXF GRAD TEXTS MATH, V4
[9]  
KOPPELMAN W, 1961, J MATH MECH, V10, P247
[10]  
Meister E., 1992, COMPLEX VARIABLES TH, V18, P63