ANTI-PERIODIC SOLUTIONS FOR CLIFFORD-VALUED HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH STATE-DEPENDENT AND LEAKAGE DELAYS

被引:15
作者
Huo, Nina [1 ]
Li, Bing [2 ]
Li, Yongkun [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Nationalities Univ, Sch Math & Comp Sci, Kunming 650500, Yunnan, Peoples R China
关键词
Clifford-valued high-order Hopfield neural network; anti-periodic solution; coincidence degree; time-varying delay; GLOBAL EXPONENTIAL STABILITY; SYNCHRONIZATION; EXISTENCE; CRITERIA;
D O I
10.34768/amcs-2020-0007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of Clifford-valued high-order Hopfield neural networks (HHNNs) with state-dependent and leakage delays is considered. First, by using a continuation theorem of coincidence degree theory and the Wirtinger inequality, we obtain the existence of anti-periodic solutions of the networks considered. Then, by using the proof by contradiction, we obtain the global exponential stability of the anti-periodic solutions. Finally, two numerical examples are given to illustrate the feasibility of our results.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 42 条
[1]   Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays [J].
Alimi, Adel M. ;
Aouiti, Chaouki ;
Cherif, Farouk ;
Dridi, Farah ;
M'hamdi, Mohammed Salah .
NEUROCOMPUTING, 2018, 321 :274-295
[2]  
Amster P., 2013, TOPOLOGICAL METHODS
[3]  
[Anonymous], 2005, PhD Thesis
[5]   Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays [J].
Aouiti, Chaouki ;
Coirault, Patrick ;
Miaadi, Foued ;
Moulay, Emmanuel .
NEUROCOMPUTING, 2017, 260 :378-392
[6]  
BayroCorrochano E, 2010, GEOMETRIC COMPUTING: FOR WAVELET TRANSFORMS, ROBOT VISION, LEARNING, CONTROL AND ACTION, P1, DOI 10.1007/978-1-84882-929-9
[7]  
BayroCorrochano E, 1996, IEEE IJCNN, P120, DOI 10.1109/ICNN.1996.548877
[8]  
Brackx F., 1982, Clifford analysis
[9]   On Clifford neurons and Clifford multi-layer perceptrons [J].
Buchholz, Sven ;
Sommer, Gerald .
NEURAL NETWORKS, 2008, 21 (07) :925-935
[10]  
Buchholz S, 2007, LECT NOTES COMPUT SC, V4668, P864