Mumford-Shah functionals on graphs and their asymptotics

被引:10
作者
Caroccia, Marco [1 ]
Chambolle, Antonin [2 ]
Slepcev, Dejan [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
nonlocal variational problems; variational problems with randomness; discrete to continuum limit; asymptotic consistency; Gamma convergence; regression; FINITE-DIFFERENCE APPROXIMATION; CONSISTENCY; RECOVERY;
D O I
10.1088/1361-6544/ab81ee
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider adaptations of the Mumford-Shah functional to graphs. These are based on discretizations of nonlocal approximations to the Mumford-Shah functional. Motivated by applications in machine learning we study the random geometric graphs associated to random samples of a measure. We establish the conditions on the graph constructions under which the minimizers of graph Mumford-Shah functionals converge to a minimizer of a continuum Mumford-Shah functional. Furthermore we explicitly identify the limiting functional. Moreover we describe an efficient algorithm for computing the approximate minimizers of the graph Mumford-Shah functional.
引用
收藏
页码:3846 / 3888
页数:43
相关论文
共 36 条
  • [1] AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
  • [2] Ambrosio L., 2000, Oxford Mathematical Monographs, V254
  • [3] Partial regularity and smooth topology-preserving approximations of rough domains
    Ball, John M.
    Zarnescu, Arghir
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)
  • [4] Bernstein Sergei, 1924, Ann. Sci. Inst. Sav. Ukraine, Sect. Math, V1, P38
  • [5] Non-local approximation of the Mumford-Shah functional
    Braides, A
    Maso, GD
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (04) : 293 - 322
  • [6] BRENIER Y, 1987, CR ACAD SCI I-MATH, V305, P805
  • [7] Chambolle A, 1999, RAIRO-MATH MODEL NUM, V33, P261
  • [8] Chambolle A., 2010, THEORETICAL FDN NUME
  • [9] The ∞-Wasserstein distance:: Local solutions and existence of optimal transport maps
    Champion, Thierry
    De Pascale, Luigi
    Juutinen, Petri
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) : 1 - 20
  • [10] Active contours without edges
    Chan, TF
    Vese, LA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) : 266 - 277