A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems

被引:10
作者
Ebrahimzadeh, Faezeh [1 ]
Tsai, Jason Sheng-Hong [1 ]
Chung, Min-Ching [1 ]
Liao, Ying Ting [1 ]
Guo, Shu-Mei [2 ]
Shieh, Leang-San [3 ]
Wang, Li [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA
关键词
Optimal linear quadratic servomechanism; frequency shaping; optimal iterative learning control; model predictive control; PID control; control zeros; FAULT-TOLERANT CONTROL; DISTURBANCE-REJECTION; PID CONTROLLER; ZERO PLACEMENT; CONTROL DESIGN; STATE;
D O I
10.1080/00207721.2016.1186240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Contrastive to Part 1, Part 2 presents a generalised optimal linear quadratic digital tracker (LQDT) with universal applications for the discrete-time (DT) systems. This includes (1) a generalised optimal LQDT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feed through term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQDT design for non-square non-minimum phase DT systems to achieve a minimum-phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square DT systems; and (4) a one-learning-epoch input-constrained iterative learning LQDT design for the repetitive DT systems.
引用
收藏
页码:397 / 416
页数:20
相关论文
共 48 条
[1]   Iterative learning control for discrete-time systems with exponential rate of convergence [J].
Amann, N ;
Owens, DH ;
Rogers, E .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (02) :217-224
[2]  
Anderson B. D. O., 1989, OPTIMAL CONTROL LINE
[3]  
[Anonymous], 2009, MODEL PREDICTIVE CON
[4]   ZEROS OF SAMPLED SYSTEMS [J].
ASTROM, KJ ;
HAGANDER, P ;
STERNBY, J .
AUTOMATICA, 1984, 20 (01) :31-38
[5]  
Balas M. J., 2011, ADAPTIVE CONTROL N 2
[6]  
Balas M. J., 2011, ADAPTIVE CONTROL N 1
[7]  
Chang J. L., 2008, J SYSTEM DESIGN DYNA, V2, P950, DOI DOI 10.1299/JSDD.2.950
[8]   Applying discrete-time proportional integral observers for state and disturbance estimations [J].
Chang, JL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :814-818
[9]   An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control [J].
Chen, Fu-Ming ;
Tsai, Jason Sheng-Hong ;
Liao, Ying-Ting ;
Guo, Shu-Mei ;
Ho, Ming-Chung ;
Shaw, Fu-Zen ;
Shieh, Leang-San .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (02) :1130-1150
[10]   SELF-TUNING CONTROL OF NONMINIMUM-PHASE SYSTEMS [J].
CLARKE, DW .
AUTOMATICA, 1984, 20 (05) :501-517