On the Conservation of Fractional Nonlinear Schrodinger Equation's Invariants by the Local Discontinuous Galerkin Method

被引:28
作者
Castillo, P. [1 ]
Gomez, S. [1 ]
机构
[1] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
关键词
Fractional nonlinear Schrodinger equation (FNLS); Local discontinuous Galerkin (LDG); Energy and Hamiltonian conservation; CFL; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; NUMERICAL-SOLUTION; TIME; SPACE; EXISTENCE;
D O I
10.1007/s10915-018-0708-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the primal formulation of the Local Discontinuous Galerkin (LDG) method, discrete analogues of the energy and the Hamiltonian of a general class of fractional nonlinear Schrodinger equation are shown to be conserved for two stabilized version of the method. Accuracy of these invariants is numerically studied with respect to the stabilization parameter and two different projection operators applied to the initial conditions. The fully discrete problem is analyzed for two implicit time step schemes: the midpoint and the modified Crank-Nicolson; and the explicit circularly exact Leapfrog scheme. Stability conditions for the Leapfrog scheme and a stabilized version of the LDG method applied to the fractional linear Schrodinger equation are derived using a von Neumann stability analysis. A series of numerical experiments with different nonlinear potentials are presented.
引用
收藏
页码:1444 / 1467
页数:24
相关论文
共 41 条
[1]   A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrodinger type equations [J].
Aboelenen, Tarek .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 54 :428-452
[2]   Existence and stability of standing waves for nonlinear fractional Schrodinger equation with logarithmic nonlinearity [J].
Ardila, Alex H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 :52-64
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]   Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1100-1117
[6]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[7]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[8]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[9]  
Castillo P, 2000, LECT NOTES COMP SCI, V11, P285
[10]  
Cheng Y, 2008, MATH COMPUT, V77, P699, DOI 10.1090/S0025-5718-07-02045-5