SPACETIME DISCONTINUOUS GALERKIN METHODS FOR SOLVING CONVECTION-DIFFUSION SYSTEMS

被引:3
|
作者
May, Sandra [1 ]
机构
[1] TU Dortmund, Vogelpothsweg 87, D-44227 Dortmund, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2017年 / 51卷 / 05期
基金
欧洲研究理事会;
关键词
Discontinuous Galerkin method; entropy stability; convection-diffusion systems; compressible Navier-Stokes equations; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; COMPUTATIONAL FLUID-DYNAMICS; CONSERVATION-LAWS; NUMERICAL VISCOSITY; COMPRESSIBLE EULER; ENTROPY; FORMULATION; SCHEMES; FLOW;
D O I
10.1051/m2an/2017001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present two new approaches for solving systems of hyperbolic conservation laws with correct physical viscosity and heat conduction terms such as the compressible Navier-Stokes equations. Our methods are extensions of the spacetime discontinuous Galerkin method for hyperbolic conservation laws developed by Hiltebrand and Mishra [26]. Following this work, we use entropy variables as degrees of freedom and entropy stable fluxes. For the discretization of the diffusion term, we consider two different approaches: the interior penalty approach, resulting in the ST-SIPG and the ST-NIPG method, and a variant of the local discontinuous Galerkin method, resulting in the ST-LDG method. We show entropy stability of the ST-NIPG and the ST-LDG method when applied to the compressible Navier-Stokes equations. For the ST-SIPG method, this result holds under an assumption on the computed solution. All schemes incorporate shock capturing terms. Therefore, the schemes can handle both regimes of underresolved and fully resolved physical diffusion. We present a numerical comparison of the three methods in one space dimension.
引用
收藏
页码:1755 / 1781
页数:27
相关论文
共 50 条
  • [1] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    May, Sandra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 561 - 573
  • [2] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    Sandra May
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 561 - 573
  • [3] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zuozheng Zhang
    Ziqing Xie
    Zhimin Zhang
    Journal of Scientific Computing, 2009, 41 : 70 - 93
  • [4] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zhang, Zuozheng
    Xie, Ziqing
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 70 - 93
  • [5] A Robust Discontinuous Galerkin Method for Solving Convection-diffusion Problems
    Zuo-zheng Zhang Zi-qing Xie~* Xia Tao College of Mathematics and Computer Science
    ActaMathematicaeApplicataeSinica, 2008, (03) : 483 - 496
  • [6] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zuo-zheng Zhang
    Zi-qing Xie
    Xia Tao
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 483 - 496
  • [7] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zhang, Zuo-zheng
    Xie, Zi-qing
    Tao, Xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (03): : 483 - 496
  • [8] Alternating evolution discontinuous Galerkin methods for convection-diffusion equations
    Liu, Hailiang
    Pollack, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 574 - 592
  • [9] Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Metcalfe, Stephen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1578 - 1597
  • [10] COMPACT AND STABLE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    Brdar, S.
    Dedner, A.
    Kloefkorn, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A263 - A282