A de Casteljau Algorithm for q-Bernstein-Stancu Polynomials

被引:3
|
作者
Nowak, Grzegorz [1 ]
机构
[1] Great Poland Univ Social & Econ Sroda Wielkopolsk, PL-63000 Sroda Wielkopolska, Poland
关键词
D O I
10.1155/2011/609431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a generalization of the q-Bernstein polynomials and Stancu operators, where the function is evaluated at intervals which are in geometric progression. It is shown that these polynomials can be generated by a de Casteljau algorithm, which is a generalization of that relating to the classical case and q-Bernstein case.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Approximation by Durrmeyer Type Bernstein–Stancu Polynomials in Movable Compact Disks
    Bing Jiang
    Dansheng Yu
    Results in Mathematics, 2019, 74
  • [32] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2014
  • [33] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [34] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [35] Stancu type q-Bernstein operators with shifted knots
    M. Mursaleen
    Mohd Qasim
    Asif Khan
    Zaheer Abbas
    Journal of Inequalities and Applications, 2020
  • [36] Stancu type q-Bernstein operators with shifted knots
    Mursaleen, M.
    Qasim, Mohd
    Khan, Asif
    Abbas, Zaheer
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [37] De Casteljau algorithm on Lie groups and spheres
    Crouch, P.
    Kun, G.
    Silva Leite, F.
    Journal of Dynamical and Control Systems, 1999, 5 (03): : 397 - 429
  • [38] ON THE MONOTONICITY OF q-SCHURER-STANCU TYPE POLYNOMIALS
    Acu, Ana Maria
    Muraru, Carmen Violeta
    Radu, Voichita Adriana
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 19 - 28
  • [39] A projective invariant generalization of the de Casteljau algorithm
    Benitez, J.
    COMPUTER-AIDED DESIGN, 2011, 43 (01) : 3 - 11
  • [40] Approximation by Durrmeyer Type Bernstein-Stancu Polynomials in Movable Compact Disks
    Jiang, Bing
    Yu, Dansheng
    RESULTS IN MATHEMATICS, 2019, 74 (01)