Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries

被引:176
作者
Gao, Shuang [1 ]
Zhan, Xiaowen [1 ]
Cheng, Yang-Tse [1 ]
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Li-ion battery; Ni-rich cathode; Zirconium doping; Zirconates coating; Li-ion diffusion; Direct current polarization; LAYERED CATHODE MATERIALS; HIGH-RATE CAPABILITY; THERMAL-PROPERTIES; OXIDE CATHODES; HIGH-CAPACITY; LINI0.5CO0.2MN0.3O2; AL; PERFORMANCE; STABILITY; MG;
D O I
10.1016/j.jpowsour.2018.10.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We modify a nickel-rich layered LiNi0.8Co0.1Mn0.1O2 (NCM811) positive electrode material by substituting the transition metals with Zr to mitigate its structural instability and capacity degradation. We show that Zr, over a concentration range of 0.5-5.0 at.%, can simultaneously reside on and expand the lattice of NCM811 and form Li-rich lithium zirconates on their surfaces. In particular, Li(Ni0.8Co0.1Mn0.1)(0.99)Zr0.01O2 (1% Zr-NCM811) exhibits the best rate capability among all the compositions in this study. It shows higher cycling durability than the raw NCM811 at both low and high current density lithiation and de-lithiation. According to X-ray photo-electron spectroscopy and cyclic voltammetry measurements, the 1% Zr-NCM811 sample is more chemically/electrochemically stable than the raw. In addition to comparing the diffusivities in the coin-cell measurements, we demonstrate that Zr modification can facilitate Li-ion diffusion in the NCM811 balk material by direct current polarization measurements. The superior performance of Zr-NCM811 results from the lattice expansion induced by Zr doping and the presence of ion-conducting lithium zirconates partially coated on the surface of Zr-NCM811 particles.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [41] Structural, electrochemical, and Li-ion diffusion properties of Mg&Mn dual doped LiNiO2 cathode materials for Li-ion batteries
    Rao, Tian
    Gao, Peng
    Zhu, Zimeng
    Wang, Shan
    Ben, Liubin
    Zhu, Yongming
    SOLID STATE IONICS, 2022, 376
  • [42] Optimization of the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material by titanium doping
    Yang, Rui-Kai
    Wu, Zhen-Guo
    Li, Yong-Chun
    Li, Rong
    Qiu, Lang
    Wang, Dong
    Yang, Lin
    Guo, Xiao-Dong
    IONICS, 2020, 26 (07) : 3223 - 3230
  • [43] Magnetic properties of LiNi0.5Mn0.47Al0.03O2 as positive electrode for Li-ion batteries
    A. E. Abdel-Ghany
    A. Mauger
    H. Groult
    C. M. Julien
    Ionics, 2012, 18 : 241 - 247
  • [44] Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries
    Uzun, Davut
    Dogrusoz, Mehbare
    Mazman, Muhsin
    Bicer, Emre
    Avci, Ercan
    Sener, Tansel
    Kaypmaz, Tevhit Cem
    Demir-Cakan, Rezan
    SOLID STATE IONICS, 2013, 249 : 171 - 176
  • [45] Structural, electrochemical and cycling properties of Nb5+ doped LiNi0.8Co0.1Mn0.1O2 cathode materials at different calcination temperatures for lithium-ion batteries
    Wang Jiangchao
    Xue Yuming
    Dai Hongli
    Wang Luoxin
    Zhang Jiuchao
    Hu Zhaoshuo
    OPTOELECTRONICS LETTERS, 2023, 19 (09) : 548 - 555
  • [46] Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteries
    Li, Rong
    Ming, Yong
    Xiang, Wei
    Xu, Chunliu
    Feng, Guilin
    Li, Yongchun
    Chen, Yanxiao
    Wu, Zhenguo
    Zhong, Benhe
    Guo, Xiaodong
    RSC ADVANCES, 2019, 9 (63) : 36849 - 36857
  • [47] Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries
    Wu, Zhaowei
    Zhou, Yuan
    Zeng, Jinbo
    Hai, Chunxi
    Sun, Yanxia
    Ren, Xiufeng
    Shen, Yue
    Li, Xiang
    CERAMICS INTERNATIONAL, 2023, 49 (10) : 15851 - 15864
  • [48] Nonflammable Dual-Salt Electrolytes for Graphite/ LiNi0.8Co0.1Mn0.1O2 Lithium-Ion Batteries: Li+ Solvation Structure and Electrode/Eelectrolyte Interphase
    Wen, Fanjue
    Cao, Shuai
    Ren, Xin
    Cao, Yuliang
    Ai, Xinping
    Xu, Fei
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15491 - 15501
  • [49] Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries
    Ryu, Won-Hee
    Kim, Dong-Han
    Kang, Sun-Ho
    Kwon, Hyuk-Sang
    RSC ADVANCES, 2013, 3 (22): : 8527 - 8534
  • [50] Improving the Electrochemical Performance of Ni-Rich LiNi0.8Co0.1Mn0.1O2 by Enlarging the Li Layer Spacing
    Wu, Kang
    Jia, Guofeng
    Shangguan, Xuehui
    Yang, Guowei
    Zhu, Zenghu
    Peng, Zhengjun
    Zhuge, Qin
    Li, Faqiang
    Cui, Xiaoling
    Liu, Suqin
    ENERGY TECHNOLOGY, 2018, 6 (10) : 1885 - 1893