Cauchy problem for fast diffusion equation with localized reaction

被引:14
作者
Bai, Xueli [1 ]
Zhou, Shuangshuang [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast diffusion; Localized reaction; Blow-up; Global existence; Fujita exponent; Blow-up rate; Blow-up set; BLOW-UP; PARABOLIC EQUATIONS; CRITICAL EXPONENTS; HEAT-EQUATIONS; GLOBAL-SOLUTIONS; NONEXISTENCE; EXISTENCE; BOUNDARY; THEOREMS;
D O I
10.1016/j.na.2010.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the Cauchy problem for the fast diffusion equation with a localized reaction. We establish the Fujita type theorem to the problem, and then obtain the diffusion-independent blow-up rate for the non-global solutions. Moreover, we prove that the blow-up set for the problem consists of a single point under large initial data. These conclusions are quite different from those for the slow diffusion case. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2508 / 2514
页数:7
相关论文
共 24 条
[11]   BLOW-UP FOR QUASI-LINEAR HEAT-EQUATIONS WITH CRITICAL FUJITAS EXPONENTS [J].
GALAKTIONOV, VA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :517-525
[12]   THE CAUCHY-PROBLEM FOR UT=DELTAUM WHEN O LESS-THAN M LESS-THAN 1 [J].
HERRERO, MA ;
PIERRE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (01) :145-158
[13]   A BLOWUP RESULT FOR THE CRITICAL EXPONENT IN CONES [J].
LEVINE, HA ;
MEIER, P .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (02) :129-136
[14]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[15]   SOME EXISTENCE AND NONEXISTENCE THEOREMS FOR SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
LEVINE, HA ;
SACKS, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (02) :135-161
[16]   The critical exponent of doubly singular parabolic equations [J].
Liu, XF ;
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 257 (01) :170-188
[17]   ON THE CRITICAL EXPONENT FOR REACTION-DIFFUSION EQUATIONS [J].
MEIER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 109 (01) :63-71
[18]  
Mochizuki K., 1995, METHODS APPL ANAL, V2, P92, DOI [10.4310/maa.1995.v2.n1.a6, DOI 10.4310/MAA.1995.V2.N1.A6]
[19]   Existence and nonexistence of global solutions for u(t)=Delta u+a(x)u(p) in R(d) [J].
Pinsky, RG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) :152-177
[20]  
POLUBARINOVAKOCHINA PY, 1948, DOKL AKAD NAUK SSSR+, V63, P623