Cauchy problem for fast diffusion equation with localized reaction

被引:14
作者
Bai, Xueli [1 ]
Zhou, Shuangshuang [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast diffusion; Localized reaction; Blow-up; Global existence; Fujita exponent; Blow-up rate; Blow-up set; BLOW-UP; PARABOLIC EQUATIONS; CRITICAL EXPONENTS; HEAT-EQUATIONS; GLOBAL-SOLUTIONS; NONEXISTENCE; EXISTENCE; BOUNDARY; THEOREMS;
D O I
10.1016/j.na.2010.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the Cauchy problem for the fast diffusion equation with a localized reaction. We establish the Fujita type theorem to the problem, and then obtain the diffusion-independent blow-up rate for the non-global solutions. Moreover, we prove that the blow-up set for the problem consists of a single point under large initial data. These conclusions are quite different from those for the slow diffusion case. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2508 / 2514
页数:7
相关论文
共 24 条
[1]   ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL-SOLUTIONS OF REACTION-DIFFUSION EQUATIONS IN SECTORIAL DOMAINS [J].
BANDLE, C ;
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :595-622
[2]  
BIMPONGB.K, 1974, J CHEM PHYS, V60, P3124, DOI 10.1063/1.1681498
[3]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[4]   The blow-up profile for a fast diffusion equation with a nonlinear boundary condition [J].
Ferreira, R ;
De Pablo, A ;
Quiros, F ;
Rossi, JD .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (01) :123-146
[5]   Classification of blow-up with nonlinear diffusion and localized reaction [J].
Ferreira, Raul ;
de Pablo, Arturo ;
Luis Vazquez, Juan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) :195-211
[6]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[7]  
Friedman A., 1983, Partial Differential Equations
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]   A METHOD OF INVESTIGATING UNBOUNDED SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
GALAKTIONOV, VA ;
POSASHKOV, SA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (03) :148-156
[10]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146