Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries

被引:2
作者
Barrio, Rocio [1 ]
Gonzalez, Nieves [1 ]
Portugal, Alvaro [2 ]
Morant, Carmen [2 ]
Javier Gandia, Jose [1 ]
机构
[1] Ctr Invest Energet Mediambientales & Tecnol, Ave Complutense 40, Madrid 28040, Spain
[2] Autonomous Univ Madrid, Inst Ciencias Mat Nicolas Cabrera, Dept Appl Phys, Madrid 28049, Spain
关键词
anodes; lithium-ion battery; amorphous silicon; amorphous silicon nanowires; energy storage; THIN-FILM ANODES; SPECTRA; WAFERS; POWER;
D O I
10.3390/nano12244400
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite is the material most used as an electrode in commercial lithium-ion batteries. On the other hand, it is a material with low energy capacity, and it is considered a raw critical material given its large volume of use. In the current energy context, we must promote the search for alternative materials based on elements that are abundant, sustainable and that have better performance for energy storage. We propose thin materials based on silicon, which has a storage capacity eleven times higher than graphite. Nevertheless, due to the high-volume expansion during lithiation, it tends to crack, limiting the life of the batteries. To solve this problem, hydrogenated amorphous silicon has been researched, in the form of thin film and nanostructures, since, due to its amorphous structure, porosity and high specific surface, it could better absorb changes in volume. These thin films were grown by plasma-enhanced chemical vapor deposition, and then the nanowires were obtained by chemical etching. The compositional variations of films deposited at different temperatures and the incorporation of dopants markedly influence the stability and longevity of batteries. With these optimized electrodes, we achieved batteries with an initial capacity of 3800 mAhg(-1) and 82% capacity retention after 50 cycles.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
    Su, Xin
    Wu, Qingliu
    Li, Juchuan
    Xiao, Xingcheng
    Lott, Amber
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Ji
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [2] Silicon-Based Anode Materials for Lithium-Ion Batteries
    Jin, Niu
    Su, Zhang
    Yue, Niu
    Song Huaihe
    Chen Xiaohong
    Zhou Jisheng
    PROGRESS IN CHEMISTRY, 2015, 27 (09) : 1275 - 1290
  • [3] Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries
    Pan, Jie
    Zhang, Qinglin
    Li, Juchuan
    Beck, Matthew J.
    Xiao, Xingcheng
    Cheng, Yang-Tse
    NANO ENERGY, 2015, 13 : 192 - 199
  • [4] Layered amorphous silicon as negative electrodes in lithium-ion batteries
    Zhao, Leyi
    Dvorak, D. J.
    Obrovac, M. N.
    JOURNAL OF POWER SOURCES, 2016, 332 : 290 - 298
  • [5] Silicon-Based and -Related Materials for Lithium-Ion Batteries
    Zhao, Yun
    Kang, Yuqiong
    Jin, Yuhong
    Wang, Li
    Tian, Guangyu
    He, Xiangming
    PROGRESS IN CHEMISTRY, 2019, 31 (04) : 613 - 630
  • [6] Fabrication and characterization of silicon-based 3D electrodes for high energy lithium-ion batteries
    Zheng, Y.
    Smyrek, P.
    Rakebrandt, J. -H.
    Kuebel, Ch.
    Seifert, H. J.
    Pfleging, W.
    LASER-BASED MICRO- AND NANOPROCESSING XI, 2017, 10092
  • [7] High repetition ultrafast laser ablation of graphite and silicon/graphite composite electrodes for lithium-ion batteries
    Meyer, Alexandra
    Sterzl, Yannic
    Pfleging, Wilhelm
    JOURNAL OF LASER APPLICATIONS, 2023, 35 (04)
  • [8] Progress in Binders for Silicon-Based Lithium-Ion Batteries Anodes
    Xu Z.
    Zhang Z.
    Sun J.
    Zhao W.
    Wang Q.
    Cao L.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (05): : 161 - 170
  • [9] Training-improved electrochemical performances of silicon-based lithium-ion batteries
    Zhang, Kai
    Zhou, Junwu
    Zheng, Bailin
    Li, Yong
    Yang, Fuqian
    JOURNAL OF POWER SOURCES, 2025, 629
  • [10] Recent Progress in Advanced Characterization Methods for Silicon-Based Lithium-Ion Batteries
    Wu, Jingkun
    Ma, Fei
    Liu, Xiaorui
    Fan, Xiayue
    Shen, Long
    Wu, Zhihong
    Ding, Xiaoyang
    Han, Xiaopeng
    Deng, Yida
    Hu, Wenbin
    Zhong, Cheng
    SMALL METHODS, 2019, 3 (10)