Tunneling of the Kawasaki dynamics at low temperatures in two dimensions

被引:9
作者
Beltran, J. [1 ,2 ]
Landim, C. [3 ,4 ]
机构
[1] IMCA, Lima, Peru
[2] PUCP, Lima, Peru
[3] IMPA, BR-22460 Rio De Janeiro, Brazil
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 01期
关键词
Metastability; Tunneling; Lattice gases; Kawasaki dynamics; Capacities; SMALL TRANSITION-PROBABILITIES; MARKOV-CHAINS; CONSERVATIVE DYNAMICS; METASTABLE BEHAVIOR; STOCHASTIC DYNAMICS; GLAUBER DYNAMICS; GENERAL DOMAIN; EXIT PROBLEM; NUCLEATION; ASYMPTOTICS;
D O I
10.1214/13-AIHP568
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature beta on a two dimensional torus Lambda(L) = {0,..., L -1}(2). We prove the tunneling behavior of the process among the states of minimal energy. More precisely, assume that there are n(2) particles, n < L/2, and that the initial state is the configuration in which all sites of the square (0,..., n - 1)(2) are occupied. We show that in the time scale e(2 beta) the process evolves as a Markov process on Lambda(L) which jumps from any site x to any other site y not equal x at a strictly positive rate which can be expressed in terms of the hitting probabilities of simple Markovian dynamics.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 25 条
  • [11] METASTABLE BEHAVIOR OF STOCHASTIC DYNAMICS - A PATHWISE APPROACH
    CASSANDRO, M
    GALVES, A
    OLIVIERI, E
    VARES, ME
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) : 603 - 634
  • [12] Droplet growth for three-dimensional Kawasaki dynamics
    Den Hollander, F
    Nardi, FR
    Olivieri, E
    Scoppola, E
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (02) : 153 - 194
  • [13] den Hollander F, 2000, J MATH PHYS, V41, P1424, DOI 10.1063/1.533193
  • [14] Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics
    Gaudilliere, A.
    den Hollander, F.
    Nardi, F. R.
    Olivieri, E.
    Scoppola, E.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) : 737 - 774
  • [15] Gaudilliere A., 2005, Markov Process. Relat. Fields, V11, P553
  • [16] Gois B., 2013, ARXIV13054542
  • [17] Jara M., 2012, ANN PROBAB IN PRESS
  • [18] QUENCHED SCALING LIMITS OF TRAP MODELS
    Jara, Milton
    Landim, Claudio
    Teixeira, Augusto
    [J]. ANNALS OF PROBABILITY, 2011, 39 (01) : 176 - 223
  • [19] Landim C., 2012, ARXIV12045987
  • [20] Manzo F, 2004, J STAT PHYS, V115, P591, DOI [10.1023/B:JOSS.0000019822.45867.ec, 10.1023/A:1010401711216]