Tunneling of the Kawasaki dynamics at low temperatures in two dimensions

被引:10
作者
Beltran, J. [1 ,2 ]
Landim, C. [3 ,4 ]
机构
[1] IMCA, Lima, Peru
[2] PUCP, Lima, Peru
[3] IMPA, BR-22460 Rio De Janeiro, Brazil
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 01期
关键词
Metastability; Tunneling; Lattice gases; Kawasaki dynamics; Capacities; SMALL TRANSITION-PROBABILITIES; MARKOV-CHAINS; CONSERVATIVE DYNAMICS; METASTABLE BEHAVIOR; STOCHASTIC DYNAMICS; GLAUBER DYNAMICS; GENERAL DOMAIN; EXIT PROBLEM; NUCLEATION; ASYMPTOTICS;
D O I
10.1214/13-AIHP568
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature beta on a two dimensional torus Lambda(L) = {0,..., L -1}(2). We prove the tunneling behavior of the process among the states of minimal energy. More precisely, assume that there are n(2) particles, n < L/2, and that the initial state is the configuration in which all sites of the square (0,..., n - 1)(2) are occupied. We show that in the time scale e(2 beta) the process evolves as a Markov process on Lambda(L) which jumps from any site x to any other site y not equal x at a strictly positive rate which can be expressed in terms of the hitting probabilities of simple Markovian dynamics.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 25 条
[1]  
[Anonymous], MARKOV CHAINS
[2]   Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) :598-618
[3]   Metastability of reversible finite state Markov processes [J].
Beltran, J. ;
Landim, C. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (08) :1633-1677
[4]   Metastability of reversible condensed zero range processes on a finite set [J].
Beltran, J. ;
Landim, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :781-807
[5]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[6]   Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary [J].
Bovier, A ;
den Hollander, F ;
Nardi, FR .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (02) :265-310
[7]   Metastability and low lying spectra in reversible Markov chains [J].
Bovier, A ;
Eckhoff, M ;
Gayrard, V ;
Klein, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) :219-255
[8]   Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics [J].
Bovier, A ;
Manzo, F .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :757-779
[9]   Metastability in stochastic dynamics of disordered mean-field models [J].
Bovier, A ;
Eckhoff, M ;
Gayrard, V ;
Klein, M .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (01) :99-161
[10]   HOMOGENEOUS NUCLEATION FOR GLAUBER AND KAWASAKI DYNAMICS IN LARGE VOLUMES AT LOW TEMPERATURES [J].
Bovier, Anton ;
den Hollander, Frank ;
Spitoni, Cristian .
ANNALS OF PROBABILITY, 2010, 38 (02) :661-713