Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics

被引:98
作者
Song, Jung Hoon [1 ]
Choi, Hyekyoung [1 ]
Hien Thu Pham [1 ]
Jeong, Sohee [1 ,2 ]
机构
[1] Korea Inst Machinery & Mat, Nanomech Syst Res Div, Daejeon 34103, South Korea
[2] Korea Univ Sci & Technol UST, Dept Nanomechatron, Daejeon 34113, South Korea
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
SOLAR-CELLS; SOLIDS; NANOCRYSTALS; PBSE; SURFACES; LIGANDS;
D O I
10.1038/s41467-018-06399-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce indium arsenide colloidal quantum dot films for photovoltaic devices, fabricated by two-step surface modification. Native ligands and unwanted oxides on the surface are peeled off followed by passivating with incoming atomic or short ligands. The near-infrared-absorbing n-type indium arsenide colloidal quantum dot films can be tuned in energy-level positions up to 0.4 eV depending on the surface chemistry, and consequently, they boost collection efficiency when used in various emerging solar cells. As an example, we demonstrate p-n junction between n-type indium arsenide and p-type lead sulfide colloidal quantum dot layers, which leads to a favorable electronic band alignment and charge extraction from both colloidal quantum dot layers. A certified power conversion efficiency of 7.92% is achieved without additionally supporting carrier transport layers. This study provides richer materials to explore for high-efficiency emerging photovoltaics and will broaden research interest for various optoelectronic applications using the n-type covalent nanocrystal arrays.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Mechanistic Insights into the Formation of InP Quantum Dots [J].
Allen, Peter M. ;
Walker, Brian J. ;
Bawendi, Moungi G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (04) :760-762
[2]   Lead-Chalcogenide Colloidal-Quantum-Dot Solids: Novel Assembly Methods, Electronic Structure Control, and Application Prospects [J].
Balazs, Daniel M. ;
Loi, Maria Antonietta .
ADVANCED MATERIALS, 2018, 30 (33)
[3]   Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 μm and Js']Jsc in Excess of 34 mA cm-2 [J].
Bi, Yu ;
Pradhan, Santanu ;
Gupta, Shuchi ;
Akgul, Mehmet Zafer ;
Stavrinadis, Alexandros ;
Konstantatos, Gerasimos .
ADVANCED MATERIALS, 2018, 30 (07)
[4]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[5]   Colloidal Quantum Dot Solar Cells [J].
Carey, Graham H. ;
Abdelhady, Ahmed L. ;
Ning, Zhijun ;
Thon, Susanna M. ;
Bakr, Osman M. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2015, 115 (23) :12732-12763
[6]   Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability [J].
Choi, Hyekyoung ;
Ko, Jae-Hyeon ;
Kim, Yong-Hyun ;
Jeong, Sohee .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (14) :5278-5281
[7]   Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics [J].
Choi, Jongmin ;
Kim, Younghoon ;
Jo, Jea Woong ;
Kim, Junghwan ;
Sun, Bin ;
Walters, Grant ;
de Arquer, F. Pelayo Garcia ;
Quintero-Bermudez, Rafael ;
Li, Yiying ;
Tan, Chih Shan ;
Quan, Li Na ;
Kam, Andrew Pak Tao ;
Hoogland, Sjoerd ;
Lu, Zhenghong ;
Voznyy, Oleksandr ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2017, 29 (33)
[8]  
Clarkson T.W., 1988, BIOL MONITORING TOXI
[9]   Surface Chemistry of InP Quantum Dots: A Comprehensive Study [J].
Cros-Gagneux, Arnaud ;
Delpech, Fabien ;
Nayral, Celine ;
Cornejo, Alfonso ;
Coppel, Yannick ;
Chaudret, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) :18147-18157
[10]   A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals [J].
Dong, Angang ;
Ye, Xingchen ;
Chen, Jun ;
Kang, Yijin ;
Gordon, Thomas ;
Kikkawa, James M. ;
Murray, Christopher B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (04) :998-1006