Linear problem of tracking a given motion under an integral constraint on control

被引:0
作者
Nikol'skii, M. S. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Linear Problem; Admissible Control; Optimal Control Theory; Generalize Projection;
D O I
10.1134/S0081543810040139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of optimally tracking a given vector function by means of a generalized projection of the trajectory of a linear controlled object with an integral constraint on the control. The deviation from a given motion is measured in the metric of the space C (m) [0, T] of continuous vector functions of appropriate dimension m. We describe a constructive method for solving this optimization problem with a given accuracy.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 10 条
  • [1] [Anonymous], MODERN FDN SYSTEMS E
  • [2] [Anonymous], 1964, Mathematical theory of optimal processes
  • [3] [Anonymous], 1967, Foundations of Optimal Control Theory
  • [4] [Anonymous], 2002, Optimization methods
  • [5] Barbashin E.A., 1970, Introduction to the Theory of Stability
  • [6] Blagodatskikh V.I, 2001, Introduction to Optimal Control (Linear Theory)
  • [7] Demyanov V.F., 1990, INTRO MINIMAX
  • [8] Fedorov VV., 1979, Numerical Maximin Methods
  • [9] Krasovskii N.N., 1968, Theory of Motion Control. Linear Systems
  • [10] [No title captured]