Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media

被引:169
作者
Wang, Jia X. [1 ]
Zhang, Junliang [1 ]
Adzic, Radoslav R. [1 ]
机构
[1] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
关键词
D O I
10.1021/jp076104e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We derived an intrinsic kinetic equation for the four-electron oxygen reduction reaction (ORR) in acidic media using free energies of activation and adsorption as the kinetic parameters. Our kinetic model consists of four essential elementary reactions: a dissociative adsorption (DA) and a reductive adsorption (RA), which yield two reaction intermediates, 0 and OH; a reductive transition (RT) from 0 to OH; and a reductive desorption (RD) of OH. Analytic expressions were found for the 0 and OH adsorption isotherms by solving the steady-state rate equations. For the ORR on Pt(111) in 0.1 M HClO4 solution, we analyzed the measured polarization curves, thereby deducing activation free energies that are consistent with the values 0 0.46 eV) is not the rate-determining step from theoretical calculations. The reductive adsorption (AG*RA (RDS) for the ORR on Pt because dissociative adsorption (Delta G(DA)*(0) 0.26 eV) offers a more favorable pathway DA at high potentials. It, however, generates strongly adsorbed O. The high activation barriers for the 0 to OH T 0 = 0.45 eV) cause a large potential loss for the transition (Delta G(RD)(*0) = 0.50 eV) and OH desorption (Delta G(RD)(*0) desorption- limited ORR. As the OH coverage increases to a constant value with decreasing potential, the Tafel slope increases to the value determined by a symmetric electron-transfer coefficient. We discuss the role of adsorption isotherm in kinetic analysis and, via activity-and-barrier plots, illustrate why the RDS may vary with reaction conditions or may not exist. Recognizing such features of electrocatalytic reactions can facilitate reaching the long-standing goal of quantitative descriptions and predictions of electrocatalysts' activities.
引用
收藏
页码:12702 / 12710
页数:9
相关论文
共 28 条
[11]  
Kinoshita K., 1992, Electrochemical Oxygen Technology
[12]  
Markovic NM, 1999, INTERFACIAL ELECTROCHEMISTRY, P821
[13]   Oxygen reduction reaction on Pt(111): effects of bromide [J].
Markovic, NM ;
Gasteiger, HA ;
Grgur, BN ;
Ross, PN .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 467 (1-2) :157-163
[14]   Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J].
Norskov, JK ;
Rossmeisl, J ;
Logadottir, A ;
Lindqvist, L ;
Kitchin, JR ;
Bligaard, T ;
Jónsson, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17886-17892
[15]  
ROSS PN, 2003, HDB FUEL CELLS FUNDA, V2, P465
[16]   Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes [J].
Shao, Min-hua ;
Liu, Ping ;
Adzic, Radoslav R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (23) :7408-7409
[17]   Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts [J].
Shi, Z ;
Zhang, JJ ;
Liu, ZS ;
Wang, HJ ;
Wilkinson, DP .
ELECTROCHIMICA ACTA, 2006, 51 (10) :1905-1916
[18]   Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure [J].
Stamenkovic, Vojislav ;
Mun, Bongjin Simon ;
Mayrhofer, Karl J. J. ;
Ross, Philip N. ;
Markovic, Nenad M. ;
Rossmeisl, Jan ;
Greeley, Jeff ;
Norskov, Jens K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (18) :2897-2901
[19]   Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J].
Stamenkovic, Vojislav R. ;
Fowler, Ben ;
Mun, Bongjin Simon ;
Wang, Guofeng ;
Ross, Philip N. ;
Lucas, Christopher A. ;
Markovic, Nenad M. .
SCIENCE, 2007, 315 (5811) :493-497
[20]  
Tarasevich MR, 1983, COMPR TREAT, P301, DOI DOI 10.1007/978-1-4613-3584-9_