Improved parameter estimation from noisy time series for nonlinear dynamical systems

被引:7
|
作者
Nakamura, Tomomichi
Hirata, Yoshito
Judd, Kevin
Kilminster, Devin
Small, Michael
机构
[1] Univ Western Australia, Ctr Appl Dynam & Optimizat, Sch Math & Stat, Perth, WA 6009, Australia
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Kowloon, Hong Kong, Peoples R China
[3] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
来源
关键词
gradient descent; parameter estimation; state estimation; the least squares method;
D O I
10.1142/S021812740701804X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of estimating the parameters of a nonlinear dynamical system given a finite time series of observations that are contaminated by observational noise. The least squares method is a standard method for parameter estimation, but for nonlinear dynamical systems it is well known that the least squares method can result in biased estimates, especially when the noise is significant relative to the nonlinearity. In this paper, it is demonstrated that by combining nonlinear noise reduction and least squares parameter fitting it is possible to obtain more accurate parameter estimates.
引用
收藏
页码:1741 / 1752
页数:12
相关论文
共 50 条
  • [31] Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
    Bisaillon, Philippe
    Sandhu, Rimple
    Khalil, Mohammad
    Pettit, Chris
    Poirel, Dominique
    Sarkar, Abhijit
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1061 - 1080
  • [32] Parameter estimation of delay dynamical system from a scalar time series under external noise
    Ghosh, Dibakar
    Chowdhury, A. Roy
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2069 - 2076
  • [33] Parameter estimation of linear and nonlinear systems based on orthogonal series
    Alejo, David
    Isidro, Lazaro
    Jesus, Rico
    Alvarez, Alberto
    INTERNATIONAL MEETING OF ELECTRICAL ENGINEERING RESEARCH 2012, 2012, 35 : 67 - 76
  • [34] Detecting dynamical states from noisy time series using bicoherence
    George, Sandip V.
    Ambika, G.
    Misra, R.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 465 - 479
  • [35] Spectral collocation-based optimization in parameter estimation for nonlinear time-varying dynamical systems
    Deshmukh, Venkatesh
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 853 - 862
  • [36] Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems
    Deshmukh, Venkatesh
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (01):
  • [37] Detecting dynamical states from noisy time series using bicoherence
    Sandip V. George
    G. Ambika
    R. Misra
    Nonlinear Dynamics, 2017, 89 : 465 - 479
  • [38] Parameter sensitivity of noisy chaotic time series
    Hung, ES
    PHYSICAL REVIEW E, 1997, 56 (01) : 235 - 238
  • [39] Nonlinear time series analysis for dynamical systems of catastrophe type
    Department of Biometry, Medical University of South Carolina, Charleston, SC 29425, United States
    不详
    Lect. Notes Control Inf. Sci., 2006, (97-118):
  • [40] Time Series Prediction by Chaotic Modeling of Nonlinear Dynamical Systems
    Basharat, Arslan
    Shah, Mubarak
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 1941 - 1948