Information-preserving structures: A general framework for quantum zero-error information

被引:76
作者
Blume-Kohout, Robin [1 ]
Ng, Hui Khoon [2 ]
Poulin, David [3 ]
Viola, Lorenza [4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[4] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
DECOHERENCE-FREE SUBSPACES; REALIZATION; COMPUTATION; SUBSYSTEMS; COMPUTERS; CAPACITY; STATES;
D O I
10.1103/PhysRevA.82.062306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures, to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e. g., "noiseless," "unitarily correctible," etc.) and introduce two natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational criteria, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.
引用
收藏
页数:25
相关论文
共 84 条
[11]   General Conditions for Approximate Quantum Error Correction and Near-Optimal Recovery Channels [J].
Beny, Cedric ;
Oreshkov, Ognyan .
PHYSICAL REVIEW LETTERS, 2010, 104 (12)
[12]   Characterizing the structure of preserved information in quantum processes [J].
Blume-Kohout, Robin ;
Ng, Hui Khoon ;
Poulin, David ;
Viola, Lorenza .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[13]   Experimental implementation of a concatenated quantum error-correcting code [J].
Boulant, N ;
Viola, L ;
Fortunato, EM ;
Cory, DG .
PHYSICAL REVIEW LETTERS, 2005, 94 (13)
[14]   QUANTUM OPTICAL MASTER-EQUATIONS - THE USE OF DAMPING BASES [J].
BRIEGEL, HJ ;
ENGLERT, BG .
PHYSICAL REVIEW A, 1993, 47 (04) :3311-3329
[15]   Entanglement measures and approximate quantum error correction [J].
Buscemi, Francesco .
PHYSICAL REVIEW A, 2008, 77 (01)
[16]   Beyond the T1 limit:: Singlet nuclear spin states in low magnetic fields -: art. no. 153003 [J].
Carravetta, M ;
Johannessen, OG ;
Levitt, MH .
PHYSICAL REVIEW LETTERS, 2004, 92 (15) :153003-1
[17]   Efficient feedback controllers for continuous-time quantum error correction [J].
Chase, Bradley A. ;
Landahl, Andrew J. ;
Geremia, J. M. .
PHYSICAL REVIEW A, 2008, 77 (03)
[18]   Realization of quantum error correction [J].
Chiaverini, J ;
Leibfried, D ;
Schaetz, T ;
Barrett, MD ;
Blakestad, RB ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 432 (7017) :602-605
[19]   INJECTIVITY AND OPERATOR SPACES [J].
CHOI, MD ;
EFFROS, EG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (02) :156-209
[20]   Method to find quantum noiseless subsystems [J].
Choi, MD ;
Kribs, DW .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)