WNT Signaling Suppression in the Senescent Human Thymus

被引:25
作者
Ferrando-Martinez, Sara [1 ,2 ,3 ,4 ]
Ruiz-Mateos, Ezequiel [4 ]
Dudakov, Jarrod A. [5 ]
Velardi, Enrico [5 ]
Grillari, Johannes [6 ]
Kreil, David P. [7 ,8 ]
Angeles Munoz-Fernandez, Ma [1 ,2 ,3 ]
van den Brink, Marcel R. M. [5 ]
Leal, Manuel [4 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Lab InmunoBiol Mol, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Madrid, Spain
[4] Univ Seville, Clin Unit Infect Dis Microbiol & Prevent Med, Inst Biomed Seville,CSIC, Lab Immunovirol,IBiS,Virgen del Rocio Univ Hosp, Seville, Spain
[5] Sloan Kettering Inst, Dept Immunol & Med, New York, NY USA
[6] Univ Nat Resources & Appl Life Sci, VIBT BOKU, Dept Biotechnol, Vienna, Austria
[7] BOKU Univ Vienna, Chair Bioinformat, Vienna, Austria
[8] Univ Warwick, Life Sci, Coventry CV4 7AL, W Midlands, England
来源
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES | 2015年 / 70卷 / 03期
基金
美国国家卫生研究院;
关键词
Human thymus; Thymus involution; WNT pathway; Aging; LEUKEMIA INHIBITORY FACTOR; T-CELL DEVELOPMENT; BETA-CATENIN; GROWTH-HORMONE; EXPRESSION; ADIPOGENESIS; INVOLUTION; AGE; ACTIVATION; MICE;
D O I
10.1093/gerona/glu030
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Human thymus is completely developed in late fetal stages and its function peaks in newborns. After the first year of life, the thymus undergoes a progressive atrophy that dramatically decreases de novo T-lymphocyte maturation. Hormonal signaling and changes in the microRNA expression network are identified as underlying causes of human thymus involution. However, specific pathways involved in the age-related loss of thymic function remain unknown. In this study, we analyzed differential gene-expression profile and microRNA expression in elderly (70 years old) and young (less than 10 months old and 11 years old) human thymic samples. Our data have shown that WNT pathway deregulation through the overexpression of different inhibitors by the nonadipocytic component of the human thymus stimulates the age-related involution. These results are of particular interest because interference of WNT signaling has been demonstrated in both animal models and in vitro studies, with the three major hallmarks of thymic involution: (i) epithelial structure disruption, (ii) adipogenic process, and (iii) thymocyte development arrest. Thus, our results suggest that secreted inhibitors of the WNT pathway could be explored as a novel therapeutical target in the reversal of the age-related thymic involution.
引用
收藏
页码:273 / 281
页数:9
相关论文
共 50 条
  • [1] Wnt Effector TCF4 Is Dispensable for Wnt Signaling in Human Cancer Cells
    Hrckulak, Dusan
    Janeckova, Lucie
    Lanikova, Lucie
    Kriz, Viterslav
    Horazna, Monika
    Babosova, Olga
    Vojtechova, Martina
    Galuskova, Katerina
    Sloncova, Eva
    Korinek, Vladimir
    GENES, 2018, 9 (09):
  • [2] Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules
    Weerkamp, F
    Baert, MRM
    Naber, BAE
    Koster, EEL
    de Haas, EFE
    Atkuri, KR
    van Dongen, JJM
    Herzenberg, LA
    Staal, FJT
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (09) : 3322 - 3326
  • [3] Elevated levels of Wnt signaling disrupt thymus morphogenesis and function
    Swann, Jeremy B.
    Happe, Christiane
    Boehm, Thomas
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Suppression of Wnt/β-catenin signaling inhibits prostate cancer cell proliferation
    Lu, Wenyan
    Tinsley, Heather N.
    Keeton, Adam
    Qu, Zhican
    Piazza, Gary A.
    Li, Yonghe
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2009, 602 (01) : 8 - 14
  • [5] Inhibition of phosphodiesterase 5 reduces bone mass by suppression of canonical Wnt signaling
    Gong, Y.
    Xu, C. Y.
    Wang, J. R.
    Hu, X. H.
    Hong, D.
    Ji, X.
    Shi, W.
    Chen, H. X.
    Wang, H. B.
    Wu, X. M.
    CELL DEATH & DISEASE, 2014, 5 : e1544 - e1544
  • [6] Wnt signaling and human diseases: what are the therapeutic implications?
    Luo, Jinyong
    Chen, Jin
    Deng, Zhong-Liang
    Luo, Xiaoji
    Song, Wen-Xin
    Sharff, Katie A.
    Tang, Ni
    Haydon, Rex C.
    Luu, Hue H.
    He, Tong-Chuan
    LABORATORY INVESTIGATION, 2007, 87 (02) : 97 - 103
  • [7] Canonical Wnt Signaling Reverses the 'Aged/Senescent' Phenotype of Human Endogenous Cardiac Stem Cells
    Lewis, Fiona C.
    Teoh, Tze Shin
    Domenj-Vila, Eva
    Theologou, Thomas
    Field, Mark
    Awad, Wael
    Ellison-Hughes, Georgina M.
    CIRCULATION, 2016, 134
  • [8] Smad4 restoration leads to a suppression of Wnt/β-catenin signaling activity and migration capacity in human colon carcinoma cells
    Tian, Xiaoxiao
    Du, Hao
    Fu, Xiangsheng
    Li, Kang
    Li, Aimin
    Zhang, Yali
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 380 (03) : 478 - 483
  • [9] The neuroprotective role of Wnt signaling in the retina
    Kassumeh, Stefan
    Weber, Gregor R.
    Nobl, Matthias
    Priglinger, Siegfried G.
    Ohlmann, Andreas
    NEURAL REGENERATION RESEARCH, 2021, 16 (08) : 1524 - 1528
  • [10] Activation of Wnt/β-catenin/Tcf signaling pathway in human astrocytomas
    Sareddy, Gangadhara Reddy
    Panigrahi, Manas
    Challa, Sundaram
    Mahadevan, Anita
    Babu, Phanithi Prakash
    NEUROCHEMISTRY INTERNATIONAL, 2009, 55 (05) : 307 - 317